
November 15, 2001 nws/intro.nw 1

The 54321 Development Document

Patrick Stein

2001-11-16

Table of Contents

Contents

1 Introduction 7

I Underlying Basics 9

2 Generic Cube 9
2.1 The Constructor . 10
2.2 Assigning the Whole Cube a Single Value 10
2.3 Coordinate Manipulation Methods 11
2.4 Access Methods . 15
2.5 The Cube class . 18
2.6 The cube.h file . 19
2.7 The cube.cpp file . 19

3 The Font Class 21
3.1 The Constructor . 21
3.2 The Destructor . 23
3.3 The Display Methods . 24
3.4 The Font class . 26
3.5 The font.h file . 26
3.6 The font.cpp file . 26

4 Sound Device 28
4.1 The Constructor and Destructor 28
4.2 Checking The Sound Device . 31
4.3 Playing A Buffer . 31
4.4 Making A Ding . 32
4.5 The Callback Functions . 32
4.6 The SoundDev class . 34
4.7 The soundDev.h file . 35
4.8 The soundDev.cpp file . 35

November 15, 2001 nws/intro.nw 2

5 The Generic Game Controller 37
5.1 The Constructor and Destructor 37
5.2 The Mouse Event Interface . 38
5.3 The Game Setting Interface . 39
5.4 The Controller class . 39
5.5 The controller.h file . 40
5.6 The controller.cpp file . 40

6 The Generic Game View 41
6.1 The Constructor . 44
6.2 Resetting the Button States . 47
6.3 Handling Mouse Clicks . 47
6.4 Converting Between Screen and Cell Coordinates 51
6.5 The Redraw Methods . 55
6.6 The Sound Methods . 58
6.7 The Winning Method . 60
6.8 The Losing Method . 60
6.9 Setting the Help Mode . 61
6.10 The View class . 62
6.11 The view.h file . 64
6.12 The view.cpp file . 64

II The Main Menu 66

7 The Main Menu Controller 66
7.1 The Constructor and Destructor 66
7.2 The Mouse Event Interface . 67
7.3 The Game Setting Interface . 68
7.4 The MainMenuController class 69
7.5 The mainmenuController.h file 70
7.6 The mainmenuController.cpp file 70

8 The Main Menu View 72
8.1 The Constructor . 73
8.2 The Destructor . 74
8.3 The Redraw Methods . 75
8.4 Handling Mouse Clicks . 77
8.5 The Point in Box Method . 78
8.6 The MainMenuView class . 79
8.7 The mainmenuView.h file . 80
8.8 The mainmenuView.cpp file . 80

November 15, 2001 nws/intro.nw 3

9 The Help Screen Class 82
9.1 The Constructor . 82
9.2 Handling Mouse Clicks . 84
9.3 Loading the Help File . 86
9.4 The Help class . 92
9.5 The help.h file . 93
9.6 The help.cpp file . 94

III The Flip Flop Game 95

10 Flip Flop 95
10.1 The Constructor . 96
10.2 The Reset Method . 97
10.3 The Flip Method . 99
10.4 The FlipFlop class . 101
10.5 The flipflop.h file . 102
10.6 The flipflop.cpp file . 102

11 The FlipFlop Game Controller 103
11.1 The Constructor and Destructor 103
11.2 The Reset Method . 104
11.3 The Mouse Event Interface . 105
11.4 The Game Setting Interface . 106
11.5 The FlipFlopController class 108
11.6 The flipflopController.h file 109
11.7 The flipflopController.cpp file 109

12 The FlipFlop Game View 111
12.1 The Constructor . 111
12.2 The Destructor . 112
12.3 The Redraw Methods . 112
12.4 The FlipFlopView class . 114
12.5 The flipflopView.h file . 115
12.6 The flipflopView.cpp file . 115

IV The Bomb Squad Game 116

13 Bomb Squad 116
13.1 The Constructor . 117
13.2 The Reset Method . 118
13.3 The Uncover Method . 121
13.4 The Toggle Flag Method . 122
13.5 Checking for a Win . 123
13.6 The BombSquad class . 124

November 15, 2001 nws/intro.nw 4

13.7 The bomb.h file . 125
13.8 The bomb.cpp file . 126

14 The BombSquad Game Controller 127
14.1 The Constructor and Destructor 127
14.2 The Reset Method . 128
14.3 The Mouse Event Interface . 129
14.4 The Game Setting Interface . 130
14.5 The BombSquadController class 132
14.6 The bombController.h file . 133
14.7 The bombController.cpp file . 133

15 The BombSquad Game View 135
15.1 The Constructor . 135
15.2 The Destructor . 136
15.3 The Redraw Methods . 137
15.4 The Reset Method . 141
15.5 The Winning Method . 141
15.6 The Losing Method . 141
15.7 The BombSquadView class . 142
15.8 The bombView.h file . 143
15.9 The bombView.cpp file . 143

V The Maze Runner Game 144

16 Maze Runner 144
16.1 The Constructor . 146
16.2 The Reset Method . 147
16.3 The Move Method . 152
16.4 The Disjoint Set ADT Methods 157
16.5 The Maze class . 159
16.6 The maze.h file . 160
16.7 The maze.cpp file . 160

17 The Maze Game Controller 161
17.1 The Constructor and Destructor 161
17.2 The Reset Method . 162
17.3 The Mouse Event Interface . 163
17.4 The Game Setting Interface . 164
17.5 The MazeController class . 166
17.6 The mazeController.h file . 167
17.7 The mazeController.cpp file . 167

November 15, 2001 nws/intro.nw 5

18 The Maze Game View 169
18.1 The Constructor . 169
18.2 The Destructor . 171
18.3 The Redraw Methods . 171
18.4 The MazeView class . 174
18.5 The mazeView.h file . 175
18.6 The mazeView.cpp file . 175

VI The Peg Jumper Game 176

19 Peg Jumper 176
19.1 The Constructor . 177
19.2 The Reset Method . 178
19.3 The Check Selected Method . 180
19.4 The Select Method . 181
19.5 The Jump Method . 182
19.6 The Peg class . 185
19.7 The peg.h file . 186
19.8 The peg.cpp file . 187

20 The Peg Jumpers View 188
20.1 The Constructor . 188
20.2 The Destructor . 189
20.3 The Redraw Methods . 190
20.4 The PegView class . 193
20.5 The pegView.h file . 193
20.6 The pegView.cpp file . 194

21 The Peg Jumper Game Controller 195
21.1 The Constructor and Destructor 195
21.2 The Reset Method . 196
21.3 The Mouse Event Interface . 197
21.4 The Game Setting Interface . 198
21.5 The PegController class . 200
21.6 The pegController.h file . 201
21.7 The pegController.cpp file . 201

VII The Tile Slider Game 203

22 Tile Slider 203
22.1 The Constructor . 204
22.2 The Reset Method . 204
22.3 The Move Method . 206
22.4 The Tile class . 209

November 15, 2001 nws/intro.nw 6

22.5 The tile.h file . 210
22.6 The tile.cpp file . 210

23 The Tile Slider Game Controller 211
23.1 The Constructor and Destructor 211
23.2 The Reset Method . 212
23.3 The Mouse Event Interface . 213
23.4 The Game Setting Interface . 215
23.5 The TileController class . 216
23.6 The tileController.h file . 217
23.7 The tileController.cpp file . 218

24 The Tile Sliders View 219
24.1 The Constructor . 219
24.2 The Destructor . 220
24.3 The Redraw Methods . 221
24.4 The Goal State Methods . 224
24.5 The TileView class . 225
24.6 The tileView.h file . 226
24.7 The tileView.cpp file . 226

VIII The Life Game 227

25 Life 227
25.1 The Constructor . 228
25.2 The Reset Method . 228
25.3 The Flip Method . 230
25.4 The Generation Method . 231
25.5 The Life class . 232
25.6 The life.h file . 233
25.7 The life.cpp file . 234

26 The Life Game Controller 235
26.1 The Constructor and Destructor 235
26.2 The Reset Method . 236
26.3 The Mouse Event Interface . 237
26.4 The Game Setting Interface . 238
26.5 Other Hooks . 240
26.6 The LifeController class . 241
26.7 The lifeController.h file . 242
26.8 The lifeController.cpp file . 242

November 15, 2001 nws/intro.nw 7

27 The Life Game View 244
27.1 The Constructor . 244
27.2 The Destructor . 245
27.3 The Redraw Methods . 245
27.4 The LifeView class . 248
27.5 The lifeView.h file . 249
27.6 The lifeView.cpp file . 249

IX The Main Program 250

28 The main loop of the program 250
28.1 Initializing the SDL Library . 250
28.2 Initializing the SDL Video Mode 251
28.3 Initializing the SDL Audio Device 251
28.4 The Seeding the Random Numbers 252
28.5 The Event Loop . 252
28.6 The main.cpp file . 255

X Architecture-Specific Code 258

29 Darwin-specific code 258
29.1 The Objective C application object 258
29.2 The ObjectiveMain routine . 260
29.3 The Darwin-main.m file . 260
29.4 The Darwin-main-help.cpp file 261

1 Introduction

This document is geared toward the programmer. It is geared toward the pro-
grammer who wishes to understand the way this game is coded. It is not really
geared toward the end-user. All of the end-user explanation of “Why Four Di-
mensions?” and “What’s The Object Of This Game?” is dealt with in the
“Help” portions of the game.

In general, I tried to follow a “Model-View-Controller” paradigm. I munged
this slightly by including some fielding of mouse events in the view instead of in
the controller. But, when I have done that, I have had the view invoke methods
on the controller to let the controller update the model.

I have tried to adhere to this paradigm so that at a later date, I can replace
the controllers with different ones to read in moves from a CGI script in order
to verify high-score claims by clients. It is becoming less and less clear to me,
how useful this will prove.

The only other bit of munging is that I have made sound a part of the
“View”. I would argue that this isn’t really munging. The “View” is meant to

November 15, 2001 nws/intro.nw 8

be the user-presentable version of the model. It just so happens that some of
the rendering is aural instead of visual.

This program was written for the 1MB SDL Game Programming contest spon-
sored by Linux Journal1, Loki Software2, and No Starch Press3.

To keep the global namespace squeaky clean, almost all of the code herein
is wrapped in its own namespace.
〈NameSpace〉≡
NKlein_54321

1http://www.linuxjournal.com/
2http://www.lokigames.com/
3http://www.nostarch.com/

November 15, 2001 9

Part I

Underlying Basics

2 Generic Cube

The namespace inside the cube class is a concatenation of the general namespace
and the name of the cube class.
〈CubeNameSpace〉≡
〈NameSpace〉::Cube
All of the games here are based upon a cube that is length four on each side.

This class encapsulates a simple cube (in either two, three, or four dimensions)
that is length four on each side. This cube class simply stores an integer for
each unit cell and allows access to it.
〈Cube Type Declarations〉≡

typedef int CellType;

〈Cube Constant Declarations〉≡
enum { SIDE_LENGTH = 4 };

The memory and computational requirements for this class could be signif-
icantly diminished for the two- and three-dimensional cases. However, because
this code is geared toward a contest where the compiled size of the code mat-
ters (and because none of the games require stunning response times), this class
doesn’t make any allowance for the number of dimensions, it always assumes
the four-dimensional case.
〈Cube Constant Declarations〉+≡

enum { DIMENSIONS = 4 };

The primary aim of this class is to store an integer at each point in a 4 ×
4× 4× 4 cube.
〈Cube Constant Declarations〉+≡

enum {
ARRAY_LEN = SIDE_LENGTH * SIDE_LENGTH * SIDE_LENGTH * SIDE_LENGTH

};

〈Cube Internal Array Declaration〉≡
CellType array[ARRAY_LEN];

In addition to the whole four-dimensional array length, the class stores a
lookup table for the effective array lengths in different dimensions.
〈Cube Array Length Declaration〉≡

static const unsigned int arrayLengths[];

November 15, 2001 10

The effective ARRAY_LEN for a particular number of dimensions is the SIDE_LEN
raised to the dimensions power.
〈Cube Array Length〉≡

const unsigned int 〈CubeNameSpace〉::arrayLengths[] = {
1,
SIDE_LENGTH,
SIDE_LENGTH * SIDE_LENGTH,
SIDE_LENGTH * SIDE_LENGTH * SIDE_LENGTH,
SIDE_LENGTH * SIDE_LENGTH * SIDE_LENGTH * SIDE_LENGTH

};

2.1 The Constructor

The default constructor is the only one needed. It, of course, requires no argu-
ments.
〈Cube Constructor Declaration〉≡

Cube(void);

The constructor for the cube simply initializes each element of the array
to zero using the assignment method defined in the following section. The
constructor also validates the assumption of all of this code that there are to be
(at most) four spatial dimensions.
〈Cube Constructor Implementation〉≡
〈CubeNameSpace〉::Cube(void)
{

assert(DIMENSIONS == 4);
CellType zero = (CellType)0;
*this = zero;

}

2.2 Assigning the Whole Cube a Single Value

We will override the assignment operator to allow one to set the whole cube to
a single value.
〈Cube Assignment Declaration〉≡

void operator = (const CellType& value);

November 15, 2001 11

This is as simple as looping through each possible index in the internal array
and assigning the value to each one. But, first, we verify that the value is in a
legitimate portion of memory.
〈Cube Assignment Implementation〉≡

void
〈CubeNameSpace〉::operator = (

const 〈CubeNameSpace〉::CellType& value
)

{
〈Cube Check Value Address〉
for (unsigned int ii=0; ii < ARRAY_LEN; ++ii) {

this->array[ii] = value;
}

}

The only check performed to ensure that the value is valid is to make sure
that its address is non-null.
〈Cube Check Value Address〉≡

assert(&value != 0);

2.3 Coordinate Manipulation Methods

In order to facilitate simpler storage in classes that need to maintain references to
particular cells, the Cube class makes available methods which convert between
a coordinate representation and the cube’s internal one-dimensional indexing
and a method which can take two sets of coordinates that differ on one axis and
tell which axis and which direction they differ.

The first of these methods allows one to convert from vector coordinates into
the cube’s internal indexing.
〈Cube Vector To Index Declaration〉≡

static void vectorToIndex(
const unsigned int vec[DIMENSIONS],
unsigned int* index

);

November 15, 2001 12

This method first verifies that the output location and the input vector are
legitmate. Then, it calculates the index represented by the vector and stores it
in the output location.
〈Cube Vector To Index Implementation〉≡

void
〈CubeNameSpace〉::vectorToIndex(

const unsigned int vec[〈CubeNameSpace〉::DIMENSIONS],
unsigned int* index

)
{

〈Cube Check Index Pointer〉
〈Cube Check Vector〉
〈Cube Calculate Index 〉

}

The only check performed to ensure that the index pointer is valid is to make
sure it is non-null.
〈Cube Check Index Pointer〉≡

assert(index != 0);

Verifying the the coordinates are legitimate is as simple as making sure that
each coordinate is less than SIDE_LENGTH. They are guaranteed to be greater
than or equal to zero because they are unsigned integers.
〈Cube Check Vector〉≡

assert(vec[0] < SIDE_LENGTH);
assert(vec[1] < SIDE_LENGTH);
assert(vec[2] < SIDE_LENGTH);
assert(vec[3] < SIDE_LENGTH);

There are a variety of ways we could have calculated the index from the
vector. This is the most readable way, in my opinion. If you’ve done any image
processing, you are probably familiar with calculations like xx + yy * width.
The following calculation is simply an n-dimensional version of that. You can
verify this to yourself by assuming that only vec[0] and vec[1] are non-zero.
〈Cube Calculate Index 〉≡

*index = 0;

for (unsigned int ii=0; ii < DIMENSIONS; ++ii) {
*index *= SIDE_LENGTH;
*index += vec[(DIMENSIONS - 1) - ii];

}

November 15, 2001 13

The second of these methods allows one to convert from the cube’s internal
indexing into vector coordinates.
〈Cube Index To Vector Declaration〉≡

static void indexToVector(
unsigned int index,
unsigned int vec[DIMENSIONS]

);

This method first verifies that the index is in the valid range and that the
output vector is legitimate. Then, it calculates the vector represented by the
given index.
〈Cube Index To Vector Implementation〉≡

void
〈CubeNameSpace〉::indexToVector(

unsigned int index,
unsigned int vec[〈CubeNameSpace〉::DIMENSIONS]

)
{

〈Cube Check Index Value〉
〈Cube Check Vector Pointer〉
〈Cube Calculate Vector〉

}

The check to verify that the index is on a valid range is quite simple. It
simply checks to see that the index is smaller than the length of the internal
array. Since the index is an unsigned integer, we are already assured that it is
at least zero.
〈Cube Check Index Value〉≡

assert(index < ARRAY_LEN);

The check to verify that the vector pointer is valid simply checks to be sure
that it is non-null. It’s an unsophisticated check, but should never really get
invoked anyway.
〈Cube Check Vector Pointer〉≡

assert(vec != 0);

This calculation is the inverse of the calculation from the previous method
(hopefully, that is no surprise). The above method repeatedly added in coor-
dinates and multiplied by SIDE_LENGTH. This method mods out the coordinates
and divides by SIDE_LENGTH.
〈Cube Calculate Vector〉≡

for (unsigned int ii=0; ii < DIMENSIONS; ++ii) {
vec[ii] = index % SIDE_LENGTH;
index /= SIDE_LENGTH;

}

November 15, 2001 14

Several classes need to determine the direction of motion between two vectors
that are in line with each other. This method returns true if the two vectors
are on the same line and it assigns the axis parameter to the axis on which they
differ and the positive parameter to reflect whether the distance is shorter in
the positive or negative direction.
〈Cube Determine Axis Declaration〉≡

static bool determineAxis(
unsigned int vf[DIMENSIONS],
unsigned int vt[DIMENSIONS],
bool wrapping,
unsigned int* axis,
bool* positive

);

This method counts the number of axises that differ. There should be exactly
one differing axis for any valid move.
〈Cube Determine Axis Implementation〉≡

bool
〈CubeNameSpace〉::determineAxis(

unsigned int vf[DIMENSIONS],
unsigned int vt[DIMENSIONS],
bool wrapping,
unsigned int* axis,
bool* positive

)
{

assert(axis != 0);
assert(positive != 0);

*positive = true;

unsigned int diffCount = 0;
〈Cube Calculate Which Axis〉
return (diffCount == 1);

}

November 15, 2001 15

To determine which axis the change is on, we take the difference of each
coordinate. When we find one that is different, we record which axis it was on
and whether the difference was positive or negative.
〈Cube Calculate Which Axis〉≡

for (unsigned int ii=0; ii < DIMENSIONS; ++ii) {
int diff = ((int)vt[ii] - (int)vf[ii]);

if (diff != 0) {
if (wrapping) {

unsigned int udiff = (SIDE_LENGTH + diff) % SIDE_LENGTH;
if (udiff >= SIDE_LENGTH/2) {

*positive = false;
}

} else {
if (diff < 0) {

*positive = false;
}

}
*axis = ii;
++diffCount;

}
}

2.4 Access Methods

All of the storage space in the world is pointless if one cannot access it. The
Cube class allows one to access the elements in the cube by giving their vector
coordinates.
〈Cube Get Cell Declarations〉≡

CellType& operator [] (const unsigned int vec[DIMENSIONS]);

To do this, the method simply calls the method which converts the vector
coordinates into an index and then uses that index to return the appropriate
element.
〈Cube Get Cell Implementations〉≡

〈CubeNameSpace〉::CellType&
〈CubeNameSpace〉::operator [] (

const unsigned int vec[〈CubeNameSpace〉::DIMENSIONS]
)

{
unsigned int index;
this->vectorToIndex(vec, &index);

return this->array[index];
}

November 15, 2001 16

In addition to allowing one to access the element via vector coordinates, the
Cube class also allows one to access it by the internal index.
〈Cube Get Cell Declarations〉+≡

CellType& operator [] (const unsigned int index);

To do this, the method simply returns the appropriate element.
〈Cube Get Cell Implementations〉+≡

〈CubeNameSpace〉::CellType&
〈CubeNameSpace〉::operator [] (

const unsigned int index
)

{
assert(index < ARRAY_LEN);
return this->array[index];

}

The cube also has a topology to it. Rather than encode that topology into
every one of the subgames, the Cube class will have a method which retrieves the
indexes of the neighbors of a particular cell. The method returns the number
of neighbors found.
〈Cube Get Neighbors Declaration〉≡

static unsigned int getNeighbors(
unsigned int nn[2 * DIMENSIONS],
unsigned int index,
unsigned int dimensions,
bool wrap = true

);

November 15, 2001 17

This method simply goes through each of the possible directions and checks
the neighboring coordinates. This method loops through the dimensions of
interest. At each one, it checks the element at +1 and -1 in that direction.
〈Cube Get Neighbors Implementation〉≡

unsigned int
〈CubeNameSpace〉::getNeighbors(

unsigned int nn[
2 * 〈CubeNameSpace〉::DIMENSIONS

],
unsigned int index,
unsigned int dims,
bool wrap

)
{

unsigned int vec[DIMENSIONS];
〈CubeNameSpace〉::indexToVector(index, vec);

unsigned int ii=0;

if (wrap) {
for (unsigned int jj=0; jj < dims; ++jj) {

〈Cube getNeighbors check wrapped〉
}

} else {
for (unsigned int jj=0; jj < dims; ++jj) {

〈Cube getNeighbors check no wrap〉
}

}

return ii;
}

When checking for wrapped coordinates, we simply take the original coordi-
nate and check it with plus or minus one added to it. We take special care when
subtracting to ensure that we stay positive the whole time. Then, we restore
the original coordinate.
〈Cube getNeighbors check wrapped〉≡

unsigned int coord = vec[jj];
vec[jj] = (coord + 1) % SIDE_LENGTH;
〈CubeNameSpace〉::vectorToIndex(vec, &nn[ii++]);
vec[jj] = (coord + SIDE_LENGTH - 1) % SIDE_LENGTH;
〈CubeNameSpace〉::vectorToIndex(vec, &nn[ii++]);
vec[jj] = coord;

November 15, 2001 18

When checking in the non-wrapped case, we have to make sure not to include
elements that run off the edges.
〈Cube getNeighbors check no wrap〉≡

unsigned int coord = vec[jj];
if (coord + 1 < SIDE_LENGTH) {

vec[jj] = (coord + 1);
〈CubeNameSpace〉::vectorToIndex(vec, &nn[ii++]);

}
if (coord >= 1) {

vec[jj] = (coord - 1);
〈CubeNameSpace〉::vectorToIndex(vec, &nn[ii++]);

}
vec[jj] = coord;

2.5 The Cube class

In this section, we assemble the Cube class from the pieces in the sections above.
First, we include the type and constant declarations so that they will be

readily available for use in other declarations.
〈Cube Class Definition〉≡

public:
〈Cube Type Declarations〉
〈Cube Constant Declarations〉

Then, we declare the constructor for the cube class.
〈Cube Class Definition〉+≡

public:
〈Cube Constructor Declaration〉

After the constructor, we declare the method used to assign the same value
to each element of the cube.
〈Cube Class Definition〉+≡

public:
〈Cube Assignment Declaration〉

The next methods that we include are the vector to index and index to
vector methods and the axis determination routine.
〈Cube Class Definition〉+≡

public:
〈Cube Index To Vector Declaration〉
〈Cube Vector To Index Declaration〉
〈Cube Determine Axis Declaration〉

November 15, 2001 19

After that, we declare the accessor method for the cells of this class and the
accessor method that retrieves neighbors of a given point.
〈Cube Class Definition〉+≡

public:
〈Cube Get Cell Declarations〉
〈Cube Get Neighbors Declaration〉

Next, we declare the internal storage portion of the class.
〈Cube Class Definition〉+≡

private:
〈Cube Internal Array Declaration〉

We also declare the lookup table which stores the effective array length for
different dimensions.
〈Cube Class Definition〉+≡

public:
〈Cube Array Length Declaration〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Cube Class Declaration〉≡

class Cube {
〈Cube Class Definition〉

};

2.6 The cube.h file

In this section, we assemble the header file for the Cube class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈cube.h〉≡

namespace 〈NameSpace〉 {
〈Cube Class Declaration〉

};

2.7 The cube.cpp file

For the actual C++ source code, we include the header file that defines assert()
and then include the header file generated in the previous section.
〈cube.cpp〉≡

#include <assert.h>
#include "cube.h"

Next, we include the actual lookup table for the effective array lengths for
different dimensions.
〈cube.cpp〉+≡

〈Cube Array Length〉

November 15, 2001 20

After that, we incorporate the implementation of the constructor.
〈cube.cpp〉+≡

〈Cube Constructor Implementation〉
The source file also includes the code for the method which assigns each

element of the cube a given value.
〈cube.cpp〉+≡

〈Cube Assignment Implementation〉
Next, we include the implementations of the vector to index and index to

vector methods and the axis determination routine.
〈cube.cpp〉+≡

〈Cube Vector To Index Implementation〉
〈Cube Index To Vector Implementation〉
〈Cube Determine Axis Implementation〉

And, finally, we incorporate the implementation of the accessor method for
the cells of the cube and the method which retrieves neighbors of a given cell.
〈cube.cpp〉+≡

〈Cube Get Cell Implementations〉
〈Cube Get Neighbors Implementation〉

November 15, 2001 nws/font.nw 21

3 The Font Class

The namespace inside the font class is a concatenation of the general namespace
and the name of the Font class.
〈FontNameSpace〉≡
〈NameSpace〉::Font
The font class stores a pointer to the image used for the font.

〈Font Image〉≡
SDL_Surface* image;

The font class also keeps track of the width of each character in the font.
〈Font Widths〉≡

enum {
START_CHAR = 32,
END_CHAR = 127

};
unsigned int widths[END_CHAR+1];

3.1 The Constructor

The constructor for the font class takes no arguments.
〈Font Constructor Declaration〉≡

Font(void);

The constructor for the font class simply loads the font image and fills in
the character widths. Each character in the font begins one pixels from the left
edge and sixteen pixels from the top edge. The widths of each character are
different.
〈Font Constructor Implementation〉≡

〈FontNameSpace〉::Font(void)
{

this->image = ::IMG_Load("../../data/font.png");
for (unsigned int ii=0; ii < START_CHAR; ++ii) {

this->widths[ii] = 0;
}
for (unsigned int ii=START_CHAR; ii < END_CHAR; ++ii) {

this->widths[ii] = 8;
}

〈Font prepare character widths〉
}

November 15, 2001 nws/font.nw 22

There are plenty of better ways to assign each of the characters a width.
But, this one seemed the simplest to me at the time. Since the default width of
all characters is 8, those characters that are to stay that width are not included.
Those characters which are included are included in the order they appear in
the font bitmap (top-to-bottom, left-to-right).
〈Font prepare character widths〉≡

this->widths[’ ’] = 4;
this->widths[’,’] = 4;
this->widths[’t’] = 6;

this->widths[’!’] = 5;
this->widths[’-’] = 7;
this->widths[’E’] = 7;
this->widths[’]’] = 6;
this->widths[’i’] = 4;

this->widths[’"’] = 7;
this->widths[’.’] = 4;
this->widths[’:’] = 4;
this->widths[’F’] = 7;
this->widths[’j’] = 6;

this->widths[’#’] = 12;
this->widths[’;’] = 4;
this->widths[’G’] = 7;
this->widths[’_’] = 12;
this->widths[’w’] = 13;

this->widths[’$’] = 7;
this->widths[’<’] = 10;
this->widths[’T’] = 7;
this->widths[’‘’] = 5;
this->widths[’l’] = 4;
this->widths[’x’] = 9;

this->widths[’%’] = 11;
this->widths[’1’] = 5;
this->widths[’I’] = 5;
this->widths[’a’] = 7;
this->widths[’m’] = 11;

this->widths[’>’] = 10;
this->widths[’V’] = 9;
this->widths[’n’] = 7;

November 15, 2001 nws/font.nw 23

this->widths[’\’’] = 3;
this->widths[’W’] = 14;
this->widths[’c’] = 7;
this->widths[’{’] = 6;

this->widths[’(’] = 5;
this->widths[’@’] = 16;
this->widths[’L’] = 7;
this->widths[’X’] = 9;
this->widths[’|’] = 4;

this->widths[’)’] = 5;
this->widths[’5’] = 7;
this->widths[’A’] = 7;
this->widths[’M’] = 12;
this->widths[’q’] = 7;
this->widths[’}’] = 6;

this->widths[’*’] = 7;
this->widths[’6’] = 7;
this->widths[’B’] = 7;
this->widths[’Z’] = 6;
this->widths[’f’] = 5;
this->widths[’r’] = 7;

this->widths[’7’] = 7;
this->widths[’C’] = 7;
this->widths[’O’] = 7;
this->widths[’[’] = 4;
this->widths[’g’] = 7;
this->widths[’s’] = 7;

3.2 The Destructor

The destructor for the font class releases the image loaded in the constructor.
〈Font Destructor Declaration〉≡

~Font(void);

The destructor for the font class simply releases the font image.
〈Font Destructor Implementation〉≡

〈FontNameSpace〉::~Font(void)
{

if (this->image != 0) {
::SDL_FreeSurface(this->image);

}
}

November 15, 2001 nws/font.nw 24

3.3 The Display Methods

The font class has a method which allows one to write text centered at a specific
point on a surface.
〈Font Display Declarations〉≡

virtual void centerMessage(
SDL_Surface* screen,
bool refresh,
int xx, int yy,
const char* fmt,
...

);

The display function here uses vsnprintf() function to format the message.
Then, it calculates the width of the message. Then, it calculates the point it
should start displaying the message and displays it.
〈Font Display Implementations〉≡

void
〈FontNameSpace〉::centerMessage(

SDL_Surface* screen,
bool refresh,
int xx, int yy,
const char* fmt,
...

)
{

〈Font centerMessage prepare string〉
〈Font centerMessage calculate width〉
〈Font centerMessage calculate starting point〉
〈Font centerMessage display text〉

}

If you’ve ever used vsnprintf() or its kin before, you should recognize this.
Here, we assume the a buffer of size 256 will be big enough for any message that
would actually fit on the screen.
〈Font centerMessage prepare string〉≡

char buf[256];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);

November 15, 2001 nws/font.nw 25

To calculate the width, we simply start summing the widths of each character
in the string.
〈Font centerMessage calculate width〉≡

unsigned int width = 0;
for (const char* ptr = buf; *ptr != 0; ++ptr) {

assert((unsigned int)*ptr <= END_CHAR);
width += this->widths[*ptr];

}

The starting point should be half the width to the left of the base point
and it should be sixteen pixels above the baseline. The extra 1 subtracted from
the xx coordinate is to compensate for the fact that the first column of each
character is not to be considered in the placing of the character.
〈Font centerMessage calculate starting point〉≡

xx -= (int)width / 2 + 1;
yy -= 16;

The message is displayed by blitting each character to the screen. Once the
whole message has been blitted, the whole area will be updated. The extra 32
added to the width to refresh allows for the fact that we started one pixel to
the left of the origin and the last letter may extend further to the right than its
width would specify.
〈Font centerMessage display text〉≡

SDL_Rect dst;
dst.x = xx;
dst.y = yy;

for (const char* ptr = buf; *ptr != 0; ++ptr) {
if (*ptr >= START_CHAR) {

unsigned int cc = *ptr - START_CHAR;
unsigned int row = cc / 12;
unsigned int col = cc - row * 12;
SDL_Rect src;
src.x = col * 21;
src.y = row * 32;
src.w = this->widths[*ptr];
src.h = 32;
::SDL_BlitSurface(this->image, &src, screen, &dst);
dst.x += src.w;

}
}

if (refresh) {
::SDL_UpdateRect(screen, xx, yy, width+32, 32);

}

November 15, 2001 nws/font.nw 26

3.4 The Font class

In this section, we assemble the Font class from the pieces in the sections above.
We include, in the Font class, the constructor and the display methods.

〈Font Class Definition〉≡
public:

〈Font Constructor Declaration〉
〈Font Destructor Declaration〉
〈Font Display Declarations〉

We include the variables that are used in the font class.
〈Font Class Definition〉+≡

private:
〈Font Image〉
〈Font Widths〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Font Class Declaration〉≡

class Font {
〈Font Class Definition〉

};

3.5 The font.h file

In this section, we assemble the header file for the Font class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈font.h〉≡

namespace 〈NameSpace〉 {
〈Font Class Declaration〉

};

3.6 The font.cpp file

In this section, we assemble the Font source file. It requires the SDL headers for
dealing with surfaces, the screen, blitting, and loading images.
〈font.cpp〉≡

#include <SDL.h>
#include <SDL_image.h>
#include <assert.h>
#include <stdarg.h>
#include "font.h"

November 15, 2001 nws/font.nw 27

After the header files, we include the implementations of the constructor and
the display methods.
〈font.cpp〉+≡

〈Font Constructor Implementation〉
〈Font Destructor Implementation〉
〈Font Display Implementations〉

November 15, 2001 nws/sound.nw 28

4 Sound Device

The namespace inside the sound device class is a concatenation of the general
namespace and the name of the sound device class.
〈SoundDevNameSpace〉≡
〈NameSpace〉::SoundDev
The sound device uses a constant to define the frequency that it will open

the system audio device.
〈SoundDev Frequency〉≡

enum {
FREQ = 8192

};

The sound device tracks the actual parameters with which the sound device
was opened.
〈SoundDev Audio Spec〉≡

SDL_AudioSpec spec;
bool opened;

The sound device also keeps track of the size of the buffer that it is currently
playing.
〈SoundDev Current Buffer〉≡

Uint8* currentBuf;
Uint8* currentPtr;
unsigned int currentLen;

The sound device has a buffer which it keeps set up with a ding in it.
〈SoundDev Ding Buffer〉≡

Uint8 dingBuf[FREQ];
unsigned int dingLen;

4.1 The Constructor and Destructor

The default constructor is the only one available for the sound device. It, of
course, takes no arguments.
〈SoundDev Constructor Declaration〉≡

SoundDev(void);

November 15, 2001 nws/sound.nw 29

The constructor for the sound device attempts to open the sound device for
a single channel of the desired frequency. It first has to prepare the desired
audio specification. Then, it has to attempt to open the device itself. If the
device was opened, then we’ll prepare a buffer with a ding noise in it.
〈SoundDev Constructor Implementation〉≡
〈SoundDevNameSpace〉::SoundDev(void)

: currentBuf(0), currentPtr(0), currentLen(0)
{

〈SoundDev Prepare Desired Spec〉
〈SoundDev Open Audio〉

if (this->opened) {
〈SoundDev fill ding buffer〉

}
}

The desired sound format is 8-bit signed data at 8KHz with a sixty-fourth
of a second buffer.
〈SoundDev Prepare Desired Spec〉≡

SDL_AudioSpec desired;

desired.freq = FREQ;
desired.format = AUDIO_S16SYS;
desired.channels = 1;
desired.samples = (FREQ >> 6);
desired.callback = SoundDev::callbackTrampoline;
desired.userdata = this;

To open the audio device, we simply call the appropriate method from the
SDL library. If we didn’t get the frequency that we wanted, then we will just
close up and forget about audio.
〈SoundDev Open Audio〉≡

if (::SDL_OpenAudio(&desired, &this->spec) < 0) {
this->opened = false;

} else {
if (this->spec.freq != FREQ
|| this->spec.format != AUDIO_S16SYS) {

::SDL_CloseAudio();
this->opened = false;

} else {
this->opened = true;

}
}

November 15, 2001 nws/sound.nw 30

First, we reset the length of the ding buffer to zero. Then, we fill in the first
part of the buffer with our tone getting louder and louder from zero up to its
full volume of 8192 out of 32767 in the first 64-th of a second. Then, we let the
sound decay from that maximum volume. We let it decay really quickly to give
the ding a little bit of pop.
〈SoundDev fill ding buffer〉≡

this->dingLen = 0;
double volume = 0.0;
Uint16* ptr = (Uint16*)&this->dingBuf[0];

while (this->dingLen < FREQ && volume < 8192.0) {
〈SoundDev add to ding〉
volume += 8192.0 * 64.0 / (double)FREQ;

}

while (this->dingLen < FREQ && volume > 1.0) {
〈SoundDev add to ding〉
volume *= 0.90;

}

The sample at any given point is the based upon the frequency and the
volume. We’re constructing a 256Hz tone. Then, we clip that tone into the
range of a valid 16-bit number. Then, we add the sample into the buffer.
〈SoundDev add to ding〉≡

double angle = ((double)this->dingLen / (double)FREQ * M_PI * 512.0);
int ival = (int)(::sin(angle) * volume);

〈SoundDev clip value〉

unsigned short val = (ival & 0x00FFFF);
*ptr++ = val;
this->dingLen += sizeof(Uint16);

The valid range for a 16-bit number is from negative 32768 to negative 32767.
〈SoundDev clip value〉≡

if (ival >= 32767) {
ival = 32767;

} else if (ival < -32768) {
ival = -32768;

}

The destructor for the sound device has to release the audio device with
SDL.
〈SoundDev Destructor Declaration〉≡

~SoundDev(void);

November 15, 2001 nws/sound.nw 31

The destructor for the sound device has to release the audio device with
SDL. But, it only has to do this if the device is still open. It also has to release
any buffer that is currently around.
〈SoundDev Destructor Implementation〉≡

〈SoundDevNameSpace〉::~SoundDev(void)
{

if (this->opened) {
::SDL_PauseAudio(1);
::SDL_CloseAudio();

}

delete[] this->currentBuf;
}

4.2 Checking The Sound Device

Currently, the only check one can do on the sound device is see if it is opened.
This is a simple inline function because it requires almost nothing for code.
〈SoundDev Is Opened Inline〉≡

inline bool isOpened(void) const {
return this->opened;

};

4.3 Playing A Buffer

This method takes a buffer that already contains a sound and prepares it to be
played on the audio device.
〈SoundDev Play Declaration〉≡

void play(Uint8* buffer, unsigned int len);

November 15, 2001 nws/sound.nw 32

This method pauses the audio that is currently playing. Then, it deletes the
current buffer. Then, it allocates a new buffer and copies the parameters into
the sound device. Then, it restarts the audio.
〈SoundDev Play Implementation〉≡

void
〈SoundDevNameSpace〉::play(Uint8* buffer, unsigned int len)
{

::SDL_PauseAudio(1);

delete[] this->currentBuf;

this->currentBuf = new Uint8[len];
::memcpy(this->currentBuf, buffer, len);

this->currentPtr = this->currentBuf;
this->currentLen = len;

::SDL_PauseAudio(0);
}

4.4 Making A Ding

This method generates a ding noise and plays it.
〈SoundDev Ding Declaration〉≡

void ding(void);

This method sets up a buffer big enough for the ding noise. Then, it fills
in the buffer with data for the noise. The “ding” is a quickly rising pulse of
a 256Hz tone that falls off in volume exponentially. Then, it calls the play()
method defined above to play the noise.
〈SoundDev Ding Implementation〉≡

void
〈SoundDevNameSpace〉::ding(void)
{

this->play(this->dingBuf, this->dingLen);
}

4.5 The Callback Functions

There are two callback functions defined in the sound device class. The one that
does all of the work for the class is an instance method.
〈SoundDev Callback Declarations〉≡

void callback(Uint8* stream, int len);

November 15, 2001 nws/sound.nw 33

The other method defined simply fields the callback from the SDL library
and converts it into a method call on the instance.
〈SoundDev Callback Declarations〉+≡

static void callbackTrampoline(
void* userData, Uint8* stream, int len

);

Currently, the callback function tries to copy data out of the current buffer
if there is some. If there is not any data left in the current buffer, then it simply
pauses the audio.
〈SoundDev Callback Implementations〉≡

void
〈SoundDevNameSpace〉::callback(Uint8* stream, int len)
{

if (this->currentLen > 0) {
unsigned int copyLen = this->currentLen;

if (copyLen > len) {
copyLen = len;

}

::memcpy(stream, this->currentPtr, copyLen);
this->currentPtr += copyLen;
this->currentLen -= copyLen;

stream += copyLen;
len -= copyLen;

} else {
::SDL_PauseAudio(1);

}

if (len > 0) {
::memset(stream, 0, len);

}
}

November 15, 2001 nws/sound.nw 34

As mentioned above, the callback trampoline class-method simply springs
from the SDL callback into a method call on the instance given as user data.
〈SoundDev Callback Implementations〉+≡

void
〈SoundDevNameSpace〉::callbackTrampoline(

void* userData, Uint8* stream, int len
)

{
assert(userData != 0);
SoundDev* dev = (SoundDev*)userData;
dev->callback(stream, len);

}

4.6 The SoundDev class

In this section, we assemble the SoundDev class from the pieces in the sections
above.

First, we include constant declarations so that they will be readily available
for use in other declarations.
〈SoundDev Class Definition〉≡

public:
〈SoundDev Frequency〉

Then, we declare the constructor and destructor for the sound device class.
〈SoundDev Class Definition〉+≡

public:
〈SoundDev Constructor Declaration〉
〈SoundDev Destructor Declaration〉

After the constructor, we declare the method used to check if the device is
opened.
〈SoundDev Class Definition〉+≡

public:
〈SoundDev Is Opened Inline〉

Then, we declare the methods used to actually play sounds.
〈SoundDev Class Definition〉+≡

protected:
〈SoundDev Play Declaration〉

public:
〈SoundDev Ding Declaration〉

After that, we declare the callback-related functions.
〈SoundDev Class Definition〉+≡

private:
〈SoundDev Callback Declarations〉

November 15, 2001 nws/sound.nw 35

Next, we declare the member variables used to hold the state of the device
that was opened and any buffer currently being played.
〈SoundDev Class Definition〉+≡

private:
〈SoundDev Audio Spec〉
〈SoundDev Current Buffer〉

Next, we declare the member variables which contain particular sounds.
〈SoundDev Class Definition〉+≡

〈SoundDev Ding Buffer〉
Once these declarations are all done, we throw all of these together into the

class declaration itself.
〈SoundDev Class Declaration〉≡

class SoundDev {
〈SoundDev Class Definition〉

};

4.7 The soundDev.h file

In this section, we assemble the header file for the SoundDev class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈soundDev.h〉≡

namespace 〈NameSpace〉 {
〈SoundDev Class Declaration〉

};

4.8 The soundDev.cpp file

For the actual C++ source code, we include the header file that defines assert(),
the one that defines memset(), the SDL headers needed, and then include the
header file generated in the previous section.
〈soundDev.cpp〉≡

#include <assert.h>
#include <string.h>
#include <math.h>
#include <SDL.h>
#include "soundDev.h"

#ifndef M_PI
#define M_PI 3.14159
#endif

November 15, 2001 nws/sound.nw 36

After that, we incorporate the implementations of the constructor and de-
structor.
〈soundDev.cpp〉+≡

〈SoundDev Constructor Implementation〉
〈SoundDev Destructor Implementation〉

Then, we incorporate the implementations of the methods used to play
sounds.
〈soundDev.cpp〉+≡

〈SoundDev Play Implementation〉
〈SoundDev Ding Implementation〉

The source file also includes the code for the callback routines.
〈soundDev.cpp〉+≡

〈SoundDev Callback Implementations〉

November 15, 2001 nws/control.nw 37

5 The Generic Game Controller

So that the main loop doesn’t have to deal with five different game controllers,
each of the game controllers inherits from this base class. This class gives the
main loop a method to call with mouse events. Also, it gives the View class a
consistent interface to call when buttons on the interface are pressed. And, it
includes variables which will be common to all of the game controllers.

The namespace inside the controller class is a concatenation of the general
namespace and the name of the controller class.
〈ControllerNameSpace〉≡
〈NameSpace〉::Controller
The Controller class keeps a pointer to the cube used for the game.

〈Controller Cube〉≡
Cube* cube;

The Controller class also tracks the number of dimensions that are being
used. It needs this information so that it can properly determine the screen
coordinate to cell coordinate transformations.
〈Controller Dimensions〉≡

unsigned int dims;

And, the Controller class tracks the current skill level so that it knows
which buttons should be displayed “pressed”.
〈Controller Skill Level〉≡

unsigned int skillLevel;

The Controller class also keeps track of whether or not it is wrapping
around so that it can properly render that button, too.
〈Controller Wrap〉≡

bool wrap;

5.1 The Constructor and Destructor

The constructor for the Controller class takes four arguments. The first is
a pointer to the game cube, the second specifies the number of dimensions to
employ, the third specifies the skill level to use, and the last specifies whether
the edges wrap around.
〈Controller Constructor Declaration〉≡

Controller(
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/control.nw 38

The constructor for the Controller class simply copies the arguments into
its local variables. Then, it does some simple checks on them to ensure that
they meet expectations.
〈Controller Constructor Implementation〉≡

〈ControllerNameSpace〉::Controller(
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : cube(_cube),
dims(_dims),
skillLevel(_skillLevel),
wrap(_wrap)

{
assert(cube != 0);
assert(dims > 1);
assert(dims <= 〈CubeNameSpace〉::DIMENSIONS);
assert(skillLevel < 3);

}

The destructor for the Controller class doesn’t have to do anything. It
is merely a place-holder to ensure that instances of subclasses get destructed
properly.
〈Controller Destructor Declaration〉≡

virtual ~Controller(void);

〈Controller Destructor Implementation〉≡
〈ControllerNameSpace〉::~Controller(void)
{
}

5.2 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it needs to know which mouse button was pressed.
〈Controller Mouse Click Interface〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

) = 0;

November 15, 2001 nws/control.nw 39

5.3 The Game Setting Interface

So that the view buttons can easily affect the controller state, the controller
contains methods which allow the view class to tweak the game parameters.
These are pure virtual methods here but will be overridden in the derived classes
to make the appropriate changes to the actual game-model class.
〈Controller Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims) = 0;
virtual void setSkillLevel(unsigned int _skillLevel) = 0;
virtual void setWrap(bool _wrap) = 0;
virtual void newGame(void) = 0;

5.4 The Controller class

In this section, we assemble the Controller class from the pieces in the sections
above.

The controller class needs its constructor and destructor.
〈Controller Class Definition〉≡

protected:
〈Controller Constructor Declaration〉

public:
〈Controller Destructor Declaration〉

We include, in the Controller class, the interface used for mouse clicks.
〈Controller Class Definition〉+≡

public:
〈Controller Mouse Click Interface〉

The Controller class also defines the methods used by the View class to
update the settings for the game.
〈Controller Class Definition〉+≡

public:
〈Controller Game Setting Interface〉

The Controller class also includes its member variables
〈Controller Class Definition〉+≡

protected:
〈Controller Cube〉
〈Controller Dimensions〉
〈Controller Skill Level〉
〈Controller Wrap〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Controller Class Declaration〉≡

class Controller {
〈Controller Class Definition〉

};

November 15, 2001 nws/control.nw 40

5.5 The controller.h file

In this section, we assemble the header file for the Controller class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈controller.h〉≡

namespace 〈NameSpace〉 {
〈Controller Class Declaration〉

};

5.6 The controller.cpp file

There is not much to the controller.cpp source file at the moment. It only
contains the source code for the constructor and the destructor.
〈controller.cpp〉≡

#include <assert.h>
#include "cube.h"
#include "controller.h"

〈Controller Constructor Implementation〉
〈Controller Destructor Implementation〉

November 15, 2001 nws/view.nw 41

6 The Generic Game View

So that the controllers don’t have to each deal with different game views, each
of the game views inherits from this base class. This class gives the controllers
a method to draw the screen. And, it gives the controllers a method to use to
convert screen coordinates to cell coordinates.

The namespace inside the view class is a concatenation of the general names-
pace and the name of the view class.
〈ViewNameSpace〉≡
〈NameSpace〉::View
The View class contains a pointer to the screen for output

〈View Screen〉≡
SDL_Surface* screen;

The View class contains a pointer to the sound device for audio output.
〈View Sound〉≡

SoundDev* sound;

The View class contains a pointer to the current game cube.
〈View Cube〉≡

Cube* cube;

The View class tracks the number of dimensions so that this information is
available for the screen coordinate to cell index transformations. And, it keeps
track of the skill level and wrapping mode so that it can update the buttons
properly.
〈View Game State〉≡

unsigned int dims;
unsigned int skillLevel;
bool wrap;

The View class contains a pointer to the image for the backdrop of the
sidebar. It also contains a pointer to the image for the text-overlay that is
painted over the buttons. It contains a pointer to the images for up and down
dimensions buttons. It contains a pointer to the images for up and down settings
buttons. It contains a pointer to the images for up and down game-action
buttons. And, It contains a pointer to the image for up and down help buttons.
〈View Images〉≡

SDL_Surface* sidebar;
SDL_Surface* overlay;
SDL_Surface* dimButton[2];
SDL_Surface* setButton[2];
SDL_Surface* actButton[2];
SDL_Surface* helpButton[2];

November 15, 2001 nws/view.nw 42

In addition to these images for the sidebar, the View class also holds a pointer
to the image used to congratulate the winner and a pointer to the image used
to harrass the loser when a game has been completed.
〈View Images〉+≡

SDL_Surface* victory;
SDL_Surface* losing;

The View class also keeps track of which buttons should be pressed and
which should be unpressed. But, first, it must define which buttons there are.
〈View Button Names〉≡

enum {
DIM_2 = 0,
DIM_3,
DIM_4,
EASY,
MEDIUM,
HARD,
WRAP,
NEW,
BACK,
HELP,
MAX_BUTTON

};

After that, it can use that information to just keep an array of booleans for
whether the button is pressed or not.
〈View Button States〉≡

bool bPressed[MAX_BUTTON];

The View also keeps track of when an item has been clicked down but the
mouse has not yet been released. This is used for visual feedback to the user.
The View also tracks which state the button was in before the person pressed
it.
〈View Button States〉+≡

unsigned int clickedButton;
bool originalState;

It also keeps a static array of where the buttons are located.
〈View Sidebar Location〉≡

enum { SIDEBAR_X = 600, SIDEBAR_Y = 0 };

〈View Button Location〉≡
static SDL_Rect bLocation[MAX_BUTTON];

November 15, 2001 nws/view.nw 43

〈View Button Location Declaration〉≡
SDL_Rect 〈ViewNameSpace〉::bLocation[

〈ViewNameSpace〉::MAX_BUTTON
] =

{
{ SIDEBAR_X + 2, SIDEBAR_Y + 2, 64, 64 },
{ SIDEBAR_X + 68, SIDEBAR_Y + 2, 64, 64 },
{ SIDEBAR_X + 134, SIDEBAR_Y + 2, 64, 64 },
{ SIDEBAR_X + 2, SIDEBAR_Y + 68, 64, 32 },
{ SIDEBAR_X + 68, SIDEBAR_Y + 68, 64, 32 },
{ SIDEBAR_X + 134, SIDEBAR_Y + 68, 64, 32 },
{ SIDEBAR_X + 68, SIDEBAR_Y + 102, 64, 32 },
{ SIDEBAR_X + 36, SIDEBAR_Y + 180, 128, 64 },
{ SIDEBAR_X + 36, SIDEBAR_Y + 250, 128, 64 },
{ SIDEBAR_X + 2, SIDEBAR_Y + 534, 196, 64 }

};

The View class keeps track of the color that it will paint the background of
the cube area.
〈View Colors〉≡

unsigned int bgColor;

The View class defines several constants for use in its internal calculations.
It defines SQUARE to be the size of each displayed cell of the cube.

〈View Constant Definitions〉≡
enum { SQUARE = 36 };

It defines GAP to be the size of the gap between each two-dimensional array
of cells.
〈View Constant Definitions〉+≡

enum { GAP = 4 };

It defines BLOCK to be the spacing between adjacent two-dimensional arrays
of cells.
〈View Constant Definitions〉+≡

enum { BLOCK = (〈CubeNameSpace〉::SIDE_LENGTH * SQUARE) + GAP };

The View also defines an array that tracks the starting screen coordinates of
cubes of different dimensions.
〈View Cube Start Coordinates〉≡

static unsigned int startCoords[
〈CubeNameSpace〉::DIMENSIONS + 1

][2];

November 15, 2001 nws/view.nw 44

〈View Cube Start Coordinates Definition〉≡
unsigned int 〈ViewNameSpace〉::startCoords[

〈CubeNameSpace〉::DIMENSIONS + 1
][2] = {

{ 0, 0 },
{

(600 - (BLOCK - GAP)) / 2,
(600 - (SQUARE)) / 2

},
{

(600 - (BLOCK - GAP)) / 2,
(600 - (BLOCK - GAP)) / 2

},
{

(600 - (〈CubeNameSpace〉::SIDE_LENGTH * BLOCK - GAP)) / 2,
(600 - (BLOCK - GAP)) / 2

},
{

(600 - (〈CubeNameSpace〉::SIDE_LENGTH * BLOCK - GAP)) / 2,
(600 - (〈CubeNameSpace〉::SIDE_LENGTH * BLOCK - GAP)) / 2

}
};

The view also keeps a pointer to the current Help context if there is one.
〈View Help〉≡

Help* help;

6.1 The Constructor

The constructor for the generic view class takes six arguments. The first is a
pointer to the screen, the second is a pointer to the sound device, the third is
a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth specifies the skill level, and the sixth specifies the wrapping
mode.
〈View Constructor Declaration〉≡

View(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/view.nw 45

The constructor copies the arguments into local variables. Then, it attempts
to prepare the background color for the cube and to load the images for the
sidebar and buttons. Then, it calls its own reset() method to update the
button pressed states and draw the screen.
〈View Constructor Implementation〉≡

〈ViewNameSpace〉::View(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : screen(_screen), sound(_sound), cube(_cube),
dims(_dims), skillLevel(_skillLevel), wrap(_wrap),
help(0)

{
if (this->screen != 0) {

SDL_PixelFormat* fmt = this->screen->format;
this->bgColor = SDL_MapRGB(fmt, 0, 0, 0);

}

〈View Load Images〉

this->clickedButton = MAX_BUTTON;
this->reset();

}

The view class loads the image for the backdrop of the sidebar and the text
overlay that is displayed on top of the buttons.
〈View Load Images〉≡

this->sidebar = ::IMG_Load("../../data/panel.png");
this->overlay = ::IMG_Load("../../data/overlay.png");

Then, it loads the two states for the dimension buttons.
〈View Load Images〉+≡

this->dimButton[0] = ::IMG_Load("../../data/dimOff.png");
this->dimButton[1] = ::IMG_Load("../../data/dimOn.png");

Then, it loads the two states for the settings buttons.
〈View Load Images〉+≡

this->setButton[0] = ::IMG_Load("../../data/setOff.png");
this->setButton[1] = ::IMG_Load("../../data/setOn.png");

Then, it loads the two states for the game-action buttons.
〈View Load Images〉+≡

this->actButton[0] = ::IMG_Load("../../data/actOff.png");
this->actButton[1] = ::IMG_Load("../../data/actOn.png");

November 15, 2001 nws/view.nw 46

Then, it loads the two states for the help button.
〈View Load Images〉+≡

this->helpButton[0] = ::IMG_Load("../../data/helpOff.png");
this->helpButton[1] = ::IMG_Load("../../data/helpOn.png");

Finally, it loads the images to display when the game has been completed.
〈View Load Images〉+≡

this->victory = ::IMG_Load("../../data/victory.png");
this->losing = ::IMG_Load("../../data/defeat.png");

The destructor for the view must release the images loaded above.
〈View Destructor Declaration〉≡

virtual ~View(void);

〈View Destructor Implementation〉≡
〈ViewNameSpace〉::~View(void)
{

〈View Release Images〉
}

First, the destructor releases the memory for the messages that are displayed
at the end of a game.
〈View Release Images〉≡

::SDL_FreeSurface(this->losing);
::SDL_FreeSurface(this->victory);

Next, the destructor releases the two states for the help button.
〈View Release Images〉+≡

::SDL_FreeSurface(this->helpButton[1]);
::SDL_FreeSurface(this->helpButton[0]);

Then, it release the two states for the game-action buttons.
〈View Release Images〉+≡

::SDL_FreeSurface(this->actButton[1]);
::SDL_FreeSurface(this->actButton[0]);

Then, it release the two states for the settings buttons.
〈View Release Images〉+≡

::SDL_FreeSurface(this->setButton[1]);
::SDL_FreeSurface(this->setButton[0]);

Then, it release the two states for the dimension buttons.
〈View Release Images〉+≡

::SDL_FreeSurface(this->dimButton[1]);
::SDL_FreeSurface(this->dimButton[0]);

Finally, the view class releases the sidebar image and the text overlay.
〈View Release Images〉+≡

::SDL_FreeSurface(this->overlay);
::SDL_FreeSurface(this->sidebar);

November 15, 2001 nws/view.nw 47

6.2 Resetting the Button States

This method is used to reset the button states of all of the buttons.
〈View Reset Declaration〉≡

void reset(void);

This method turns off all of the buttons and then turns on the appropriate
dimension and settings buttons.
〈View Reset Implementation〉≡

void
〈ViewNameSpace〉::reset(void)
{

for (unsigned int ii=0; ii < MAX_BUTTON; ++ii) {
this->bPressed[ii] = false;

}

this->bPressed[DIM_2 + dims - 2] = true;
this->bPressed[EASY + this->skillLevel] = true;
this->bPressed[WRAP] = this->wrap;

}

6.3 Handling Mouse Clicks

When the controller receives a mouse click, it passes it on to the View class.
The view class is responsible for determining if any of the buttons in the sidebar
were clicked. If they were, then the appropriate update method is invoked on
the controller.
〈View Mouse Click Interface〉≡

virtual bool handleMouseClick(
Controller* controller,
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/view.nw 48

If the event is a “MouseDown” event, this method loops through each button
to see which button (if any) was clicked. If a button was clicked, this is stored in
the clickedButton member. On a mouse up event where the clickedButton
member had been set, the button is set back to its original state. Then, if the
release was still inside the button, the appropriate action for that button takes
place.
〈View Mouse Click Implementation〉≡

bool
〈ViewNameSpace〉::handleMouseClick(

Controller* control,
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

〈View Mouse Click check for help-mode click〉

if (! isMouseUp) {
for (unsigned int ii=0; ii < MAX_BUTTON; ++ii) {

if (this->checkButton(xx, yy, ii)) {
this->clickedButton = ii;
〈View Mouse press button〉
return true;

}
}

} else if (isMouseUp && this->clickedButton < MAX_BUTTON) {
unsigned int ii = this->clickedButton;
bool inSide = this->checkButton(xx, yy, ii);

〈View Mouse unpress button〉

if (inSide) {
〈View Mouse Click do button thing〉

} else {
this->drawButton(ii);

}

return true;
}

return false;
}

November 15, 2001 nws/view.nw 49

If we’re in help mode, then we have to careful to let the help mode handle
any clicks before we do.
〈View Mouse Click check for help-mode click〉≡

if (this->help != 0) {
bool hit = this->help->handleMouseClick(

isMouseUp, xx, yy, buttonNumber
);

if (hit) {
return true;

}
}

When pressing the button, we save the original state so that it can be re-
stored when we’re finished. Then, we redraw the button in the opposite state.
〈View Mouse press button〉≡

this->originalState = this->bPressed[this->clickedButton];
if (! this->originalState) {

this->bPressed[this->clickedButton] = true;
this->drawButton(this->clickedButton);

}

When we go to unpress the button, we set it back to its original state. Then,
we clear the fact that this button has been clicked.
〈View Mouse unpress button〉≡

this->bPressed[this->clickedButton] = this->originalState;
this->clickedButton = MAX_BUTTON;

November 15, 2001 nws/view.nw 50

The proper thing to do when the mouse is released in the button that it
was clicked in, depends upon which button that is. First off, any click on a
button will bump us out of help mode. For the dimension buttons, we reset the
dimensions. For the skill level buttons, we reset the skill. For the wrap button,
we toggle it. For the new game button, we restart the current game. For the
back button, we kick off an event to load the main menu. For any other button,
we just redraw the button.
〈View Mouse Click do button thing〉≡

if (this->help != 0) {
this->setHelp(0);
this->drawButton(ii);
this->drawButton(HELP);
this->redraw();

} else if (ii >= DIM_2 && ii <= DIM_4) {
this->dims = ii + 2 - DIM_2;
control->setDimension(this->dims);

} else if (ii >= EASY && ii <= HARD) {
this->skillLevel = ii - EASY;
control->setSkillLevel(this->skillLevel);

} else if (ii == WRAP) {
this->wrap = ! this->wrap;
control->setWrap(this->wrap);

} else if (ii == NEW) {
control->newGame();

} else if (ii == BACK) {
SDL_Event change;
change.type = SDL_USEREVENT;
change.user.code = -1;
::SDL_PushEvent(&change);

} else if (ii == HELP) {
this->setHelp(new Help(this, this->screen));

} else {
this->drawButton(ii);

}

The mouse click function often needs to check whether a point is inside the
bounding box for a particular button. This method does that so that the same
code doesn’t have to be compiled twice.
〈View Mouse Check Button Declaration〉≡

bool checkButton(
unsigned int xx, unsigned int yy,
unsigned int ii

);

November 15, 2001 nws/view.nw 51

The implementation is straightforward. It simply checks to make sure that
both the x- and y-coordinates are within the box.
〈View Mouse Check Button Implementation〉≡

bool
〈ViewNameSpace〉::checkButton(

unsigned int xx, unsigned int yy,
unsigned int ii

)
{

return (xx >= this->bLocation[ii].x
&& xx < this->bLocation[ii].x + this->bLocation[ii].w
&& yy >= this->bLocation[ii].y
&& yy < this->bLocation[ii].y + this->bLocation[ii].h

);
}

6.4 Converting Between Screen and Cell Coordinates

Most controllers will need to go from mouse coordinates to cube coordinates
and back again. These two methods facilitate that.

The first method converts from screen coordinates xx and yy into a cell index
index. It returns false if the click missed the cube.
〈View Screen-Cell Declarations〉≡

static bool screenToCell(
unsigned int xx, unsigned int yy,
unsigned int dims,
unsigned int* index

);

November 15, 2001 nws/view.nw 52

This method first ensures that the index pointer is valid and that the number
of dimensions can be dealt with by this routine. Then, it resets the coordinates
based upon where the top corner of the cube is to be displayed. Then, it
determines the cell coordinates for that point. Then, it makes sure that the cell
coordinates are valid. Then, it gets the index from the Cube class method.
〈View Screen-Cell Implementations〉≡

bool
〈ViewNameSpace〉::screenToCell(

unsigned int xx, unsigned int yy,
unsigned int dims,
unsigned int* index

)
{

assert(index != 0);
assert(dims <= 4 && dims > 0);

〈View Screen-Cell Reset Origin〉
〈View Screen-Cell Prepare Cell Coords〉
〈View Screen-Cell Check Cell Coords〉

〈CubeNameSpace〉::vectorToIndex(coords, index);
return true;

}

To reset the origin, we subtract out the starting coordinates for the current
number of dimensions. If this number would be negative, then we bail out.
〈View Screen-Cell Reset Origin〉≡

unsigned int sx = startCoords[dims][0];
unsigned int sy = startCoords[dims][1];

if (xx < sx || sy < sy) {
return false;

}

xx -= sx;
yy -= sy;

November 15, 2001 nws/view.nw 53

To get the cell coordinates, we have to take into account the fact that there
may be multiple boards in a row. I believe the following code is the most
straightforward. The position within each tier is the screen-position modulo the
block size divided by the size of each cell. Which tier is simply the position
divided by the block size.
〈View Screen-Cell Prepare Cell Coords (clear version)〉≡

unsigned int coords[〈CubeNameSpace〉::DIMENSIONS];

coords[0] = (xx % BLOCK) / SQUARE;
coords[1] = (yy % BLOCK) / SQUARE;
coords[2] = xx / BLOCK;
coords[3] = yy / BLOCK;

However, that method requires six integer divisions. Of course, if the com-
piler were really snazzy, it could determine xx %
BLOCK and xx / BLOCK simultaneously on many architectures. However, inte-
ger division takes far longer on most processors than integer multiplication. For
example, on the Pentium, division of two unsigned 32-bit integers takes 41 clock
cycles. On the same processor, with the same size operands, multiplication takes
10 clock cycles and subtraction takes 3 clock cycles. Thus, I’m actually going
to use the following bit of code, which should do the same thing with only four
integer divisions.
〈View Screen-Cell Prepare Cell Coords〉≡

unsigned int coords[〈CubeNameSpace〉::DIMENSIONS];

coords[2] = xx / BLOCK;
coords[3] = yy / BLOCK;

coords[0] = (xx - coords[2] * BLOCK) / SQUARE;
coords[1] = (yy - coords[3] * BLOCK) / SQUARE;

Then, we have to check to make sure that none of the coordinates in the
dimensions of interest exceeded the length of a side of the cube.
〈View Screen-Cell Check Cell Coords〉≡

for (unsigned int ii=0; ii < dims; ++ii) {
if (coords[ii] >= 〈CubeNameSpace〉::SIDE_LENGTH) {

return false;
}

}

November 15, 2001 nws/view.nw 54

And, we have to check that all of the coordinates for higher dimensions than
those of interest came out to be zero.
〈View Screen-Cell Check Cell Coords〉+≡

for (unsigned int ii=dims; ii < 〈CubeNameSpace〉::DIMENSIONS; ++ii) {
if (coords[ii] > 0) {

return false;
}

}

The second method gets the screen coordinates xx and yy of the upper-left
corner of the cell with a given index index.
〈View Screen-Cell Declarations〉+≡

static void cellToScreen(
unsigned int index,
unsigned int dims,
unsigned int* xx, unsigned int* yy

);

This method is significantly easier than the previous method. It simply
needs to get the coordinates for the index from the cube and then use those to
determine the screen coordinates.
〈View Screen-Cell Implementations〉+≡

void
〈ViewNameSpace〉::cellToScreen(

unsigned int index,
unsigned int dims,
unsigned int* xx, unsigned int* yy

)
{

assert(xx != 0);
assert(yy != 0);

unsigned int coords[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(index, coords);

*xx = startCoords[dims][0]
+ coords[0] * SQUARE
+ coords[2] * BLOCK
;

*yy = startCoords[dims][1]
+ coords[1] * SQUARE
+ coords[3] * BLOCK
;

}

November 15, 2001 nws/view.nw 55

6.5 The Redraw Methods

The view class has a method which allows one to update the entire display area
for the game.
〈View Redraw Declarations〉≡

virtual void redraw(void);

The redraw function for the base view simply blanks out the backdrop of
the cube area and draws the sidebar with its buttons and its text overlay.
〈View Redraw Implementation〉≡

void
〈ViewNameSpace〉::redraw(void)
{

SDL_Rect rect;

〈View Blank Cube Area〉
〈View Draw Sidebar〉
〈View Draw Buttons〉
〈View Draw Overlay〉

}

To blank the cube area, this method simply creates a rectangle the size of
the whole cube area and fills it with the background color.
〈View Blank Cube Area〉≡

rect.x = 0;
rect.y = 0;
rect.w = 600;
rect.h = 600;
::SDL_FillRect(this->screen, 0, this->bgColor);

To draw the sidebar, this method simply copies the sidebar to the right-hand
portion of the screen.
〈View Draw Sidebar〉≡

if (this->sidebar != 0) {
rect.x = SIDEBAR_X;
rect.y = SIDEBAR_Y;
rect.w = 200;
rect.h = 600;
::SDL_BlitSurface(this->sidebar, 0, this->screen, &rect);

}

November 15, 2001 nws/view.nw 56

The View class runs through each of its buttons. It calls its own drawButton
method for each one. It passes in the index for the button. And, it sets the
update flag to false here because the buttons will all be refreshed at once when
the panel has been completely drawn.
〈View Draw Buttons〉≡

for (unsigned int ii=0; ii < MAX_BUTTON; ++ii) {
this->drawButton(ii, false);

}

To draw the overlay, this method simply copies the overlay to the right-hand
portion of the screen.
〈View Draw Overlay〉≡

if (this->overlay != 0) {
rect.x = SIDEBAR_X;
rect.y = SIDEBAR_Y;
rect.w = 200;
rect.h = 600;
::SDL_BlitSurface(this->overlay, 0, this->screen, &rect);

}

The view class has a method which allows one to update a single cell of the
cube by index. The base class does not implement this method itself because
each game will have cells which look different depending on the state of the
game cube.
〈View Redraw Declarations〉+≡

virtual void redraw(unsigned int index) = 0;

The view class has a method that redraws a single button in the side-panel.
The image is only available to the view class itself.
〈View Private Draw Declaration〉≡

void drawButton(
unsigned int button,
bool update = true

);

November 15, 2001 nws/view.nw 57

This method first picks which set of images to use based upon which type
of button this is. Then, the method checks whether the button is on or off. It
picks the appropriate image from the set accordingly. Then, it uses the rectangle
defined for that button to do the blit. If it has to update the screen, it draws in
the overlay for that button area, too, and then refreshes that rectangle of the
screen.
〈View Private Draw Implementation〉≡

void
〈ViewNameSpace〉::drawButton(

unsigned int button,
bool update

)
{

SDL_Surface** images;

〈View Draw Button pick images〉

if (this->bPressed[button]) {
++images;

}

::SDL_BlitSurface(
*images, 0,
this->screen, &bLocation[button]

);

if (update) {
〈View Draw Button portion of overlay〉
::SDL_UpdateRect(this->screen,

bLocation[button].x, bLocation[button].y,
bLocation[button].w, bLocation[button].h

);
}

}

November 15, 2001 nws/view.nw 58

The different buttons have different images associated with them. Fortu-
nately, they’re grouped quite a bit. Which images to use is obvious from the
index of the button.
〈View Draw Button pick images〉≡

if (button >= DIM_2 && button <= DIM_4) {
images = this->dimButton;

} else if (button >= EASY && button <= WRAP) {
images = this->setButton;

} else if (button >= NEW && button <= BACK) {
images = this->actButton;

} else if (button == HELP) {
images = this->helpButton;

} else {
assert(0 == 1);

}

The overlay portion that fits in this button’s bounding box has slightly
different coordinates than the box itself since the sidebar doesn’t start at the
same place the box does. Once this is taken into account, it is a simple blit to
the screen.
〈View Draw Button portion of overlay〉≡

SDL_Rect overlayRect;
overlayRect.x = bLocation[button].x - SIDEBAR_X;
overlayRect.y = bLocation[button].y - SIDEBAR_Y;
overlayRect.w = bLocation[button].w;
overlayRect.h = bLocation[button].h;

::SDL_BlitSurface(
this->overlay, &overlayRect,
this->screen, &bLocation[button]

);

6.6 The Sound Methods

There are four different sounds during the game. These are the background
music, the noise made when a move happens, the victory music, and the defeat
music. The View class defines default implementations of each of these methods.
〈View Sound Interface〉≡

virtual void backgroundMusic(bool stop = false);
virtual void moveNoise(void);
virtual void victoryMusic(void);
virtual void losingMusic(void);

November 15, 2001 nws/view.nw 59

At the moment, there is no background music. If time and space permit
before the contest deadline, I will hook in something to play music based upon
which cells are set on the board.
〈View Sound Implementations〉≡

void
〈ViewNameSpace〉::backgroundMusic(bool stop)
{
}

If the sound device was successfully opened, then we play a ding with each
move.
〈View Sound Implementations〉+≡

void
〈ViewNameSpace〉::moveNoise(void)
{

if (this->sound != 0) {
this->sound->ding();

} else {
::SDL_Delay(250U);

}
}

At the moment, there is no victory music. If time permits, I will hook in
something to play a little fanfare. For the moment, this routine simply pauses
for five seconds.
〈View Sound Implementations〉+≡

void
〈ViewNameSpace〉::victoryMusic(void)
{

::SDL_Delay(5000U);
}

At the moment, there is no losing music. If time permits, I will hook in
something to play a little fanfare. For the moment, this routine simply pauses
for three seconds.
〈View Sound Implementations〉+≡

void
〈ViewNameSpace〉::losingMusic(void)
{

::SDL_Delay(3000U);
}

November 15, 2001 nws/view.nw 60

6.7 The Winning Method

The view class has a method which allows one to tell the user the game has
been won.
〈View Winning Declaration〉≡

virtual void showWinning(
unsigned int actualMoves,
unsigned int expectedMoves

);

At the moment, the actual versus expected moves here are ignored. A simple
banner is displayed to congratulate the player. It is placed over the cube display
area until the victory music is done.
〈View Winning Implementation〉≡

void
〈ViewNameSpace〉::showWinning(

unsigned int /*actualMoves*/,
unsigned int /*expectedMoves*/

)
{

if (this->screen != 0 && this->victory != 0) {
SDL_Rect rect;
rect.x = (600 - this->victory->w) / 2;
rect.y = (600 - this->victory->h) / 2;
::SDL_BlitSurface(this->victory, 0, this->screen, &rect);
::SDL_UpdateRect(

this->screen,
rect.x, rect.y,
this->victory->w, this->victory->h

);
}
this->victoryMusic();
if (this->screen != 0 && this->victory != 0) {

this->redraw();
}

}

6.8 The Losing Method

The view class has a method which allows one to tell the user the game has
been lost.
〈View Losing Declaration〉≡

virtual void showLosing(void);

November 15, 2001 nws/view.nw 61

This method is very similar to the previous method. A simple banner is
displayed to inform the player. It is placed over the cube display area until the
losing music is done.
〈View Losing Implementation〉≡

void
〈ViewNameSpace〉::showLosing(void)
{

if (this->screen != 0 && this->losing != 0) {
SDL_Rect rect;
rect.x = (600 - this->losing->w) / 2;
rect.y = (600 - this->losing->h) / 2;
::SDL_BlitSurface(this->losing, 0, this->screen, &rect);
::SDL_UpdateRect(

this->screen,
rect.x, rect.y,
this->losing->w, this->losing->h

);
}
this->losingMusic();
if (this->screen != 0 && this->losing != 0) {

this->redraw();
}

}

6.9 Setting the Help Mode

This method is used to allow one to set the current help context.
〈View Set Help Declaration〉≡

void setHelp(Help* nn);

This method simply releases the memory associated with any old help con-
text and assigns the new help context from the argument.
〈View Set Help Implementation〉≡

void
〈ViewNameSpace〉::setHelp(Help* nn)
{

delete this->help;
this->help = nn;

if (this->help == 0) {
this->bPressed[HELP] = false;
this->drawButton(HELP);
this->redraw();

}
}

November 15, 2001 nws/view.nw 62

6.10 The View class

In this section, we assemble the View class from the pieces in the sections above.
The View class starts off by defining the constants it uses internally to size

things. And, it defines the names it uses for its buttons.
〈View Class Definition〉≡

public:
〈View Constant Definitions〉
〈View Button Names〉

The View class then defines its constructor and destructor.
〈View Class Definition〉+≡

protected:
〈View Constructor Declaration〉
〈View Destructor Declaration〉

The View class then defines its reset method.
〈View Class Definition〉+≡

public:
〈View Reset Declaration〉

The View class defines methods to convert between screen coordinates and
cell indexes.
〈View Class Definition〉+≡

public:
〈View Screen-Cell Declarations〉

The View class defines the interface for redrawing the view. And, it defines
the functions it uses internally to draw things.
〈View Class Definition〉+≡

public:
〈View Redraw Declarations〉

private:
〈View Private Draw Declaration〉

The View class also contains a method which shows a victory or failure
message on the screen. This method is declared here.
〈View Class Definition〉+≡

public:
〈View Winning Declaration〉
〈View Losing Declaration〉

The View class also defines the interface that controllers can use to play
particular game sounds.
〈View Class Definition〉+≡

public:
〈View Sound Interface〉

November 15, 2001 nws/view.nw 63

The View class defines the interface for accepting mouse clicks and the
method it uses internally to decide when the mouse has been clicked within
a particular button.
〈View Class Definition〉+≡

public:
〈View Mouse Click Interface〉

private:
〈View Mouse Check Button Declaration〉

The View class defines a method used to set the current help context.
〈View Class Definition〉+≡

public:
〈View Set Help Declaration〉

The View class also declares the array it uses in its internal structures to track
the starting position (in screen coordinates) of the cube display for different
numbers of dimensions.
〈View Class Definition〉+≡

private:
〈View Cube Start Coordinates〉

Then, the view class declares the array that it uses to track the locations of
the buttons in the sidebar.
〈View Class Definition〉+≡

public:
〈View Sidebar Location〉

private:
〈View Button Location〉

Then, the view class declares its instance variables.
〈View Class Definition〉+≡

protected:
〈View Screen〉
〈View Sound〉
〈View Cube〉
〈View Game State〉

private:
〈View Colors〉
〈View Images〉
〈View Button States〉
〈View Help〉

November 15, 2001 nws/view.nw 64

Once these declarations are all done, we throw all of these together into the
class declaration itself. We pre-declare the Controller class because we need a
pointer to one of them as an argument to the mouse-click handler. And, we pre-
declare the Help class because we need a pointer to one of them as an argument
to the setHelp() method.
〈View Class Declaration〉≡

class Controller;
class Help;
class View {

〈View Class Definition〉
};

6.11 The view.h file

In this section, we assemble the header file for the View class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈view.h〉≡

namespace 〈NameSpace〉 {
〈View Class Declaration〉

};

6.12 The view.cpp file

There is not much to the view.cpp source file at the moment. It contains the
include files it needs for the SDL interactions. And, it contains the include file
it needs to access the Cube class. It also contains the header file generated in
the previous section and the header files which let it deal with the cube, the
controller, the font, and the help contexts.
〈view.cpp〉≡

#include <assert.h>
#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "controller.h"
#include "font.h"
#include "help.h"

After that, it includes the lookup table for the starting coordinates of cubes
of different dimensions. And, it includes the list of locations of its buttons.
〈view.cpp〉+≡

〈View Cube Start Coordinates Definition〉
〈View Button Location Declaration〉

November 15, 2001 nws/view.nw 65

Next, the implementation file includes the source code for the constructor
and destructor for the View class.
〈view.cpp〉+≡

〈View Constructor Implementation〉
〈View Destructor Implementation〉

Next, the implementation file includes the source code for the reset method
and the mouse handler and its internal code to check whether mouse events
happen in particular buttons.
〈view.cpp〉+≡

〈View Reset Implementation〉
〈View Mouse Click Implementation〉
〈View Mouse Check Button Implementation〉

Then, it includes the implementation of the coordinate transformation meth-
ods.
〈view.cpp〉+≡

〈View Screen-Cell Implementations〉
After this, the source file includes the implementation of its redraw methods

〈view.cpp〉+≡
〈View Redraw Implementation〉
〈View Private Draw Implementation〉

Next, in the source file, is the default implementations of the sound methods.
These are just hooks at the moment. They will be expanded if time permits.
〈view.cpp〉+≡

〈View Sound Implementations〉
Then, the code used by the view class to display the victory or loss message

is included.
〈view.cpp〉+≡

〈View Winning Implementation〉
〈View Losing Implementation〉

Finally, the code used to set the current help mode is included.
〈view.cpp〉+≡

〈View Set Help Implementation〉

November 15, 2001 66

Part II

The Main Menu

7 The Main Menu Controller

The namespace inside the Main Menu controller class is a concatenation of the
general namespace and the name of the Main Menu controller class.
〈MainMenuCNameSpace〉≡
〈NameSpace〉::MainMenuController
The MainMenu controller inherits from the generic controller of §5. It simply

fields mouse events for the main menu screen. And, it fields clicks on the sidebar
“Quit” button.

The MainMenu game controller contains an instance of the MainMenu game
view.
〈MainMenuC View〉≡

MainMenuView view;

7.1 The Constructor and Destructor

The constructor for the MainMenu controller class takes two arguments. It
takes a pointer to the screen as its first argument and a pointer to the game
cube as the second argument. It won’t actually make any use of the game cube,
but it passes it into the Controller base class so that the base class can feel
happy about life.
〈MainMenuC Constructor Declaration〉≡

MainMenuController(
SDL_Surface* _screen, Cube* cube

);

The constructor for the MainMenu controller class simply passes its argu-
ments to the Controller constructor and the MainMenuView member. Then, it
tells the view to redraw itself.
〈MainMenuC Constructor Implementation〉≡

〈MainMenuCNameSpace〉::MainMenuController(
SDL_Surface* _screen,
Cube* _cube

) : Controller(_cube),
view(_screen)

{
this->view.redraw();

}

The destructor for the MainMenu controller does nothing at the moment.
〈MainMenuC Destructor Declaration〉≡

virtual ~MainMenuController(void);

November 15, 2001 67

〈MainMenuC Destructor Implementation〉≡
〈MainMenuCNameSpace〉::~MainMenuController(void)
{
}

7.2 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it needs to know which mouse button was pressed.
〈MainMenuC Mouse Click Declaration〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

In this case, it simply checks which area on the screen has been clicked.
Then, it sends off the appropriate user-event to tell the main loop to reset the
current controller.
〈MainMenuC Mouse Click Implementation〉≡

void
〈MainMenuCNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

unsigned int index;
bool hit;

hit = this->view.handleMouseClick(
this, isMouseUp, xx, yy, buttonNumber

);

if (!hit) {
〈MainMenuC Find Which Item Clicked〉
if (hit) {

〈MainMenuC Fire Off Change Event〉
}

}
}

November 15, 2001 68

This loop runs through each game selectable from the main menu. Then, it
checks the mouse click against the bounding box of the corresponding game.
〈MainMenuC Find Which Item Clicked〉≡

unsigned int maxGame = 〈MainMenuVNameSpace〉::MAX_GAME;
unsigned int chosen;
for (unsigned int ii=0; !hit && ii < maxGame; ++ii) {

if (this->view.pointInBox(xx, yy, ii)) {
chosen = ii;
hit = true;

}
}

For our purposes, the event that gets sent is a very simple event whose code
completely identifies the game mode to switch into. We use SDL_USEREVENT
to signal the game change. The code -1 is used to switch to the main menu.
After that, the games are coded in order: FlipFlop, BombSquad, MazeRunner,
PegJumper, and TileSlider.
〈MainMenuC Fire Off Change Event〉≡

SDL_Event change;
change.type = SDL_USEREVENT;
change.user.code = chosen;
::SDL_PushEvent(&change);

7.3 The Game Setting Interface

The main menu isn’t really a game. Therefore, it has really wimpy implemen-
tations of all of the game setting methods. They don’t do anything.
〈MainMenuC Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims);
virtual void setSkillLevel(unsigned int _skillLevel);
virtual void setWrap(bool _wrap);
virtual void newGame(void);

〈MainMenuC Game Setting Implementation〉≡
void
〈MainMenuCNameSpace〉::setDimension(

unsigned int _dims
)

{
}

November 15, 2001 69

〈MainMenuC Game Setting Implementation〉+≡
void
〈MainMenuCNameSpace〉::setSkillLevel(

unsigned int _skillLevel
)

{
}

〈MainMenuC Game Setting Implementation〉+≡
void
〈MainMenuCNameSpace〉::setWrap(

bool _wrap
)

{
}

〈MainMenuC Game Setting Implementation〉+≡
void
〈MainMenuCNameSpace〉::newGame(void)
{
}

7.4 The MainMenuController class

In this section, we assemble the MainMenuController class from the pieces in
the sections above.

We include, in the MainMenuController class, the constructor and the de-
structor.
〈MainMenuC Class Definition〉≡

public:
〈MainMenuC Constructor Declaration〉
〈MainMenuC Destructor Declaration〉

The MainMenuController class also declares the methods that would be
used by a more involved View class to change the game state.
〈MainMenuC Class Definition〉+≡

public:
〈MainMenuC Game Setting Interface〉

We include, in the MainMenuController class, the method used for mouse
clicks.
〈MainMenuC Class Definition〉+≡

public:
〈MainMenuC Mouse Click Declaration〉

November 15, 2001 70

The MainMenuController class also contains the member variables which
were defined at the beginning of this section of the document.
〈MainMenuC Class Definition〉+≡

private:
〈MainMenuC View〉

Once these declarations are all done, we throw all of these together into
the class declaration itself. The MainMenuController inherits directly from the
Controller class of §5 so that the main loop of the program doesn’t have to do
anything special for it.
〈MainMenuC Class Declaration〉≡

class MainMenuController : public Controller {
〈MainMenuC Class Definition〉

};

7.5 The mainmenuController.h file

In this section, we assemble the header file for the MainMenuController class. It
is really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈mainmenuController.h〉≡

namespace 〈NameSpace〉 {
〈MainMenuC Class Declaration〉

};

7.6 The mainmenuController.cpp file

In this section, we assemble the MainMenu controller source file. It requires
the header files for the Cube class, the SoundDev class, the View class, the
Controller class, and the MainMenuView classes in addition to its own header
file.
〈mainmenuController.cpp〉≡

#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "controller.h"
#include "mainmenuView.h"
#include "mainmenuController.h"

November 15, 2001 71

After the header files, we include the implementations of the constructor and
destructor.
〈mainmenuController.cpp〉+≡

〈MainMenuC Constructor Implementation〉
〈MainMenuC Destructor Implementation〉

After the constructor and destructor, the implementations of the bogus game
state methods are also included.
〈mainmenuController.cpp〉+≡

〈MainMenuC Game Setting Implementation〉
Then, we include the implementation of the method used to field mouse

clicks.
〈mainmenuController.cpp〉+≡

〈MainMenuC Mouse Click Implementation〉

November 15, 2001 nws/menuview.nw 72

8 The Main Menu View

The namespace inside the MainMenu view class is a concatenation of the general
namespace and the name of the MainMenu view class.
〈MainMenuVNameSpace〉≡
〈NameSpace〉::MainMenuView
The main menu defines all of the games selectable from the main menu.

This ordering is used in the arrays of images and bounding boxes below. The
ordering is also used by the main menu controller to tell the main loop when to
switch to a different game mode.
〈MainMenu Games〉≡

enum {
FLIPFLOP = 0,
BOMBSQUAD,
MAZERUNNER,
PEGJUMPER,
TILESLIDER,
MAX_GAME

};

The Main Menu stores pointers to the images of the sidebar, the backdrop,
and the button overlay.
〈MainMenu Images〉≡

SDL_Surface* sidebar;
SDL_Surface* backdrop;
SDL_Surface* overlay;

The Main Menu stores pointers to the images of the game logos to use.
〈MainMenu Images〉+≡

SDL_Surface* logos[MAX_GAME];

The Main Menu view class also stores the images used as a backdrop for the
quit button.
〈MainMenu Images〉+≡

SDL_Surface* quitButton[2];

In addition to that, it also keeps track of where the quit button is on the
screen and whether it is pressed or not.
〈MainMenu Box Declarations〉≡

static SDL_Rect quitBox;

〈MainMenu Box Definitions〉≡
SDL_Rect 〈MainMenuVNameSpace〉::quitBox = {

〈ViewNameSpace〉::SIDEBAR_X + 2,
〈ViewNameSpace〉::SIDEBAR_Y + 534,
196, 64

};

November 15, 2001 nws/menuview.nw 73

〈MainMenu Quit State〉≡
bool quitPressed;

The Main Menu also caches a pointer to the screen.
〈MainMenu Screen〉≡

SDL_Surface* screen;

The Main Menu also tracks the bounding boxes of each of the above logos.
〈MainMenu Box Declarations〉+≡

static SDL_Rect boxes[MAX_GAME];

〈MainMenu Box Definitions〉+≡
SDL_Rect 〈MainMenuVNameSpace〉::boxes[MAX_GAME] = {

{ 0, 0, 300, 200 },
{ 300, 0, 300, 200 },
{ 150, 200, 300, 200 },
{ 0, 400, 300, 200 },
{ 300, 400, 300, 200 },

};

8.1 The Constructor

The constructor for the MainMenu view class takes one argument—a pointer to
the screen.
〈MainMenuV Constructor Declaration〉≡

MainMenuView(SDL_Surface* _screen);

The constructor for the MainMenu view class loads the images for the sidebar
and quit button and for each of the games.
〈MainMenuV Constructor Implementation〉≡

〈MainMenuVNameSpace〉::MainMenuView(
SDL_Surface* _screen

) : quitPressed(false), screen(_screen)
{

〈MainMenuV Load Base Images〉
〈MainMenuV Load Logo Images〉

}

There are images for the backdrop of the sidebar, the backdrop of the game,
the overlay over the sidebar buttons, and the quit button in the up and down
states.
〈MainMenuV Load Base Images〉≡

this->sidebar = ::IMG_Load("../../data/panel.png");
this->backdrop = ::IMG_Load("../../data/backdrop.png");
this->overlay = ::IMG_Load("../../data/moverlay.png");
this->quitButton[0] = ::IMG_Load("../../data/helpOff.png");
this->quitButton[1] = ::IMG_Load("../../data/helpOn.png");

November 15, 2001 nws/menuview.nw 74

There are also logos for each of the games available from the main menu.
〈MainMenuV Load Logo Images〉≡

this->logos[FLIPFLOP]
= ::IMG_Load("../../data/flogo.png");

this->logos[BOMBSQUAD]
= ::IMG_Load("../../data/blogo.png");

this->logos[MAZERUNNER]
= ::IMG_Load("../../data/mlogo.png");

this->logos[PEGJUMPER]
= ::IMG_Load("../../data/plogo.png");

this->logos[TILESLIDER]
= ::IMG_Load("../../data/tlogo.png");

8.2 The Destructor

The destructor for the MainMenu view class simply release the images loaded
above in the constructor.
〈MainMenuV Destructor Declaration〉≡

~MainMenuView(void);

〈MainMenuV Destructor Implementation〉≡
〈MainMenuVNameSpace〉::~MainMenuView(void)
{

〈MainMenuV Release Logo Images〉
〈MainMenuV Release Base Images〉

}

Releasing the logo images is easy. We can just loop through each of the logos
and release them.
〈MainMenuV Release Logo Images〉≡

for (unsigned int ii=0; ii < MAX_GAME; ++ii) {
::SDL_FreeSurface(this->logos[ii]);

}

Releasing the base images takes a little more effort. We have to release each
image one by one.
〈MainMenuV Release Base Images〉≡

::SDL_FreeSurface(this->quitButton[1]);
::SDL_FreeSurface(this->quitButton[0]);
::SDL_FreeSurface(this->overlay);
::SDL_FreeSurface(this->backdrop);
::SDL_FreeSurface(this->sidebar);

November 15, 2001 nws/menuview.nw 75

8.3 The Redraw Methods

The MainMenu view class has a method which allows one to update the entire
display area for the game.
〈MainMenuV Redraw Declarations〉≡

void redraw(void) const;

The redraw function here simply redraws the backdrop and the sidebar and
each of the game logos.
〈MainMenuV Redraw Implementations〉≡

void
〈MainMenuVNameSpace〉::redraw(void) const
{

SDL_Rect rr;
〈MainMenu Redraw Backdrop〉
〈MainMenu Redraw Logos〉
〈MainMenu Redraw Sidebar〉
::SDL_UpdateRect(this->screen, 0, 0, 0, 0);

}

Redrawing the backdrop is simple. We simply have to copy the backdrop
onto the screen.
〈MainMenu Redraw Backdrop〉≡

::SDL_BlitSurface(this->backdrop, 0, this->screen, 0);

To draw the logos for the games onto the screen, we have to copy each of
them into their appropriate rectangle.
〈MainMenu Redraw Logos〉≡

for (unsigned int ii=0; ii < MAX_GAME; ++ii) {
rr = boxes[ii];
::SDL_BlitSurface(this->logos[ii], 0, this->screen, &rr);

}

To draw the sidebar, we first draw the backdrop of the sidebar.
〈MainMenu Redraw Sidebar〉≡

rr.x = 〈ViewNameSpace〉::SIDEBAR_X;
rr.y = 〈ViewNameSpace〉::SIDEBAR_Y;
::SDL_BlitSurface(this->sidebar, 0, this->screen, &rr);

After that, we draw the overlay atop the sidebar.
〈MainMenu Redraw Sidebar〉+≡

rr.x = 〈ViewNameSpace〉::SIDEBAR_X;
rr.y = 〈ViewNameSpace〉::SIDEBAR_Y;
::SDL_BlitSurface(this->overlay, 0, this->screen, &rr);

Then, we redraw the quit button on top of the sidebar.
〈MainMenu Redraw Sidebar〉+≡

this->redrawQuit(false);

November 15, 2001 nws/menuview.nw 76

The above draw method and the handler for mouse events both need to draw
the quit button. Rather than duplicating code, we have broken it out into its
own method.
〈MainMenuV Redraw Declarations〉+≡

void redrawQuit(bool refresh = true) const;

The method simply picks the appropriate bitmap for the current state of the
button. Then, it draws the button. Then, it copies the portion of the overlay
that would otherwise have been atop the button. Then, if it is supposed to
refresh, it updates the appropriate rectangle of the screen.
〈MainMenuV Redraw Implementations〉+≡

void
〈MainMenuVNameSpace〉::redrawQuit(bool refresh) const
{

unsigned int index = (! this->quitPressed) ? 0 : 1 ;
SDL_Surface* button = this->quitButton[index];
::SDL_BlitSurface(button, 0, this->screen, &quitBox);

〈MainMenuV Redraw Quit Show Overlay〉

if (refresh) {
::SDL_UpdateRect(

this->screen,
quitBox.x, quitBox.y,
quitBox.w, quitBox.h

);
}

}

Because the overlay is the same size as the sidebar, we have to take extra
care to make sure that we’re copying the right portion of it onto the button.
〈MainMenuV Redraw Quit Show Overlay〉≡

SDL_Rect rr = quitBox;
rr.x -= 〈ViewNameSpace〉::SIDEBAR_X;
rr.y -= 〈ViewNameSpace〉::SIDEBAR_Y;
::SDL_BlitSurface(this->overlay, &rr, this->screen, &quitBox);

November 15, 2001 nws/menuview.nw 77

8.4 Handling Mouse Clicks

When the Main Menu controller receives a mouse click, it passes it on to the
MainMenuView class. The view class is responsible for determining if the quit
button was clicked. If it was, then the quit event is sent out.
〈MainMenuV Mouse Click Declaration〉≡

virtual bool handleMouseClick(
Controller* controller,
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

This method checks to see if the event happened inside the quit button. If we
hit the quit button with a mouse down event, then we put the quit button into
the “pressed” state. Otherwise, if the quit button had already been pressed, we
put it back into the “unpressed” state if the event is a mouse up event and we
actually quit if the mouse up event happened inside of the pressed quit button.
〈MainMenuV Mouse Click Implementation〉≡

bool
〈MainMenuVNameSpace〉::handleMouseClick(

Controller* control,
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

〈MainMenuV MouseClick Check Quit Button〉

if (hitQuit && ! isMouseUp) {
〈MainMenuV MouseClick Press Quit〉

} else if (this->quitPressed) {
if (isMouseUp) {

〈MainMenuV MouseClick Unpress Quit〉
}
if (hitQuit) {

〈MainMenuV MouseClick Perform Quit〉
}

}

return hitQuit;
}

November 15, 2001 nws/menuview.nw 78

Checking to see if the mouse event happened inside the quit button is a
straightforward check of the coordinates with the bounds of the quit button.
〈MainMenuV MouseClick Check Quit Button〉≡

bool hitQuit = (
xx >= quitBox.x && xx < quitBox.x + quitBox.w

&& yy >= quitBox.y && yy < quitBox.y + quitBox.h
);

To set the button into the pressed mode, we mark it as pressed and redraw
it.
〈MainMenuV MouseClick Press Quit〉≡

this->quitPressed = true;
this->redrawQuit();

To set the button into the unpressed mode, we mark it as unpressed and
redraw it.
〈MainMenuV MouseClick Unpress Quit〉≡

this->quitPressed = false;
this->redrawQuit();

If someone pressed and then released the mouse within the quit button, then
we actually send off the SDL event to signal a quit.
〈MainMenuV MouseClick Perform Quit〉≡

SDL_Event quit;
quit.type = SDL_QUIT;
::SDL_PushEvent(&quit);

8.5 The Point in Box Method

The controller uses this method to see if the given point is inside a particular
game’s bounding box.
〈MainMenu Point In Box Declaration〉≡

bool pointInBox(
unsigned int xx, unsigned int yy,
unsigned int game

) const;

November 15, 2001 nws/menuview.nw 79

The method itself simply compares the coordinates with those of the box in
question.
〈MainMenu Point In Box Implementation〉≡

bool
〈MainMenuVNameSpace〉::pointInBox(

unsigned int xx, unsigned int yy,
unsigned int game

) const
{

assert(game < MAX_GAME);
return xx >= boxes[game].x

&& xx < boxes[game].x + boxes[game].w
&& yy >= boxes[game].y
&& yy < boxes[game].y + boxes[game].h;

}

8.6 The MainMenuView class

In this section, we assemble the MainMenuView class from the pieces in the
sections above.

We start off the MainMenuView class with the declaration of which games
are supported.
〈MainMenuV Class Definition〉≡

public:
〈MainMenu Games〉

We include, in the MainMenuView class, the constructor, the destructor, and
the redraw methods.
〈MainMenuV Class Definition〉+≡

public:
〈MainMenuV Constructor Declaration〉
〈MainMenuV Destructor Declaration〉
〈MainMenuV Redraw Declarations〉

The MainMenuView class then includes the declaration of the method used
to see if a particular button was clicked and the declaration of the method used
to field clicks on the quit button.
〈MainMenuV Class Definition〉+≡

public:
〈MainMenu Point In Box Declaration〉
〈MainMenuV Mouse Click Declaration〉

November 15, 2001 nws/menuview.nw 80

We include the variables that are used in the main menu view class.
〈MainMenuV Class Definition〉+≡

private:
〈MainMenu Images〉
〈MainMenu Screen〉
〈MainMenu Quit State〉
〈MainMenu Box Declarations〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈MainMenuV Class Declaration〉≡

class MainMenuView {
〈MainMenuV Class Definition〉

};

8.7 The mainmenuView.h file

In this section, we assemble the header file for the MainMenuView class. It is
really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈mainmenuView.h〉≡

namespace 〈NameSpace〉 {
〈MainMenuV Class Declaration〉

};

8.8 The mainmenuView.cpp file

In this section, we assemble the MainMenu view source file. It requires the SDL
headers for dealing with surfaces, the screen, blitting, and loading images. It
requires the header files for the Cube class, the SoundDev class, the View class
for its constants, and the MainMenuView class itself.
〈mainmenuView.cpp〉≡

#include <assert.h>
#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "mainmenuView.h"

November 15, 2001 nws/menuview.nw 81

After the header files, we include the implementations of the constructor,
the destructor, and the redraw methods.
〈mainmenuView.cpp〉+≡

〈MainMenuV Constructor Implementation〉
〈MainMenuV Destructor Implementation〉
〈MainMenuV Redraw Implementations〉

The main menu source file then goes on to include the implementation of
the method used to check to see if a particular box has been clicked and the
implementation of the method used to check to see if the quit button has been
clicked.
〈mainmenuView.cpp〉+≡

〈MainMenu Point In Box Implementation〉
〈MainMenuV Mouse Click Implementation〉

Then, the source file includes the definition of the bounding boxes.
〈mainmenuView.cpp〉+≡

〈MainMenu Box Definitions〉

November 15, 2001 nws/help.nw 82

9 The Help Screen Class

The namespace inside the help screen class is a concatenation of the general
namespace and the name of the help screen class.
〈HelpNameSpace〉≡
〈NameSpace〉::Help
The Help class contains a pointer to the current view so that it can update

the help class.
〈Help View〉≡

View* view;

The Help class contains a pointer to the screen for output
〈Help Screen〉≡

enum { X_OFFSET = 20 };
enum { Y_OFFSET = 20 };
SDL_Surface* screen;

The Help class keeps a copy of the font that it uses to display the actual
text of the help messages.
〈Help Font〉≡

Font* font;

The Help class also keeps an array of all of the hot spots that are currently
active.
〈Help Hot Spots〉≡

enum { MAX_HOTSPOT = 32 };
unsigned int hotSpotCount;
struct {

char fname[128];
unsigned int x;
unsigned int y;
unsigned int w;
unsigned int h;

} hotSpots[MAX_HOTSPOT];
unsigned int clickedHotSpot;

9.1 The Constructor

The constructor for the help screen class takes three arguments. The first is a
pointer to the view, the second is a pointer to the screen, and the third is an
optional name of the help-context file to open.
〈Help Constructor Declaration〉≡

Help(
View* _view,
SDL_Surface* _screen,
const char* fname = "top"

);

November 15, 2001 nws/help.nw 83

The constructor copies the view and screen into local variables. Then, it
loads the font. After that, it clears the screen and attempts to load the specified
filename.
〈Help Constructor Implementation〉≡

〈HelpNameSpace〉::Help(
View* _view,
SDL_Surface* _screen,
const char* fname

) : view(_view), screen(_screen), hotSpotCount(0)
{

this->font = new Font();

SDL_Rect rect;
rect.x = 0;
rect.y = 0;
rect.w = 600;
rect.h = 600;

::SDL_FillRect(
this->screen,
&rect,
::SDL_MapRGB(this->screen->format, 0, 0, 0)

);
::SDL_UpdateRect(this->screen, 0, 0, 0, 0);

this->load(fname);
}

The destructor for the help screen must release the font loaded above.
〈Help Destructor Declaration〉≡

virtual ~Help(void);

〈Help Destructor Implementation〉≡
〈HelpNameSpace〉::~Help(void)
{

delete this->font;
}

November 15, 2001 nws/help.nw 84

9.2 Handling Mouse Clicks

When the view class receives a mouse click, it passes it on to the Help class.
The help class is responsible for determining if any of its hot spots were clicked.
If they were, then the appropriate file should be loaded.
〈Help Mouse Click Declaration〉≡

virtual bool handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/help.nw 85

If the event is a “MouseDown” event, this method loops through each hot
spot to see which hot spot (if any) was clicked. If a hot spot was clicked, this
is stored in the clickedHotSpot member. On a mouse up event where the
clickedHotSpot member had been set, the button is set back to its original
state. Then, if the release was still inside the button, the appropriate action for
that button takes place. This method returns true if the click was anywhere
inside of the appropriate area for help clicks.
〈Help Mouse Click Implementation〉≡

bool
〈HelpNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

if (! isMouseUp) {
this->clickedHotSpot = MAX_HOTSPOT;
for (unsigned int ii=0; ii < this->hotSpotCount; ++ii) {

if (this->checkHotSpot(xx, yy, ii)) {
this->clickedHotSpot = ii;
break;

}
}

} else if (isMouseUp && this->clickedHotSpot < MAX_HOTSPOT) {
unsigned int ii = this->clickedHotSpot;
bool inSide = this->checkHotSpot(xx, yy, ii);

if (inSide) {
this->load(this->hotSpots[ii].fname);

}
this->clickedHotSpot = MAX_HOTSPOT;

}

return (xx < 600 && yy < 600);
}

The mouse click function often needs to check whether a point is inside the
bounding box for a particular hot spot. This method does that so that the same
code doesn’t have to be compiled twice.
〈Help Mouse Check Hot Spot Declaration〉≡

bool checkHotSpot(
unsigned int xx, unsigned int yy,
unsigned int ii

);

November 15, 2001 nws/help.nw 86

The implementation is straightforward. It simply checks to make sure that
both the x- and y-coordinates are within the box.
〈Help Mouse Check Hot Spot Implementation〉≡

bool
〈HelpNameSpace〉::checkHotSpot(

unsigned int xx, unsigned int yy,
unsigned int ii

)
{

return (xx >= this->hotSpots[ii].x
&& xx < this->hotSpots[ii].x + this->hotSpots[ii].w
&& yy >= this->hotSpots[ii].y
&& yy < this->hotSpots[ii].y + this->hotSpots[ii].h

);
}

9.3 Loading the Help File

This method is used to allow one to load a particular help context.
〈Help Load Declaration〉≡

void load(const char* baseName);

This method first resets the counter on the number of hot spots back to zero.
Then, it attempts to parse the file given by fname. If there are any errors in
that process, it bails and resets the help context to null.
〈Help Load Implementation〉≡

void
〈HelpNameSpace〉::load(const char* baseName)
{

this->hotSpotCount = 0;

char fname[512];
sprintf(fname, "../../data/%s.hlp", baseName);

〈Help Load parse file〉
if (err) {

this->view->setHelp(0);
}

}

November 15, 2001 nws/help.nw 87

We open the file and read a line at a time. We process each line on its own.
〈Help Load parse file〉≡

FILE* fp = fopen(fname, "r");
bool err = (fp == 0);
char buf[1024];

while (! err && fgets(buf, 1024, fp) != 0) {
〈Help Load parse line〉

}

if (fp != 0) {
fclose(fp);

}

Each of the available commands has its own subsection below. This section
just looks for the beginning string of the message.
〈Help Load parse line〉≡

if (strncmp(buf, "rect ", 5) == 0) {
〈Help Load handle rect〉

} else if (strncmp(buf, "text_center ", 12) == 0) {
〈Help Load handle text-center〉

} else if (strncmp(buf, "image ", 6) == 0) {
〈Help Load handle image〉

} else if (strncmp(buf, "subimage ", 9) == 0) {
〈Help Load handle subimage〉

} else if (strncmp(buf, "button ", 7) == 0) {
〈Help Load handle button〉

} else if (strncmp(buf, "update ", 7) == 0) {
〈Help Load handle update〉

}

November 15, 2001 nws/help.nw 88

The rectangles consist of an x, y, width, and height followed by the red,
green, and blue color components. The x and y coordinates are adjusted by the
offsets of the help window.
〈Help Load handle rect〉≡

int xx;
int yy;
unsigned int ww;
unsigned int hh;
unsigned int rr;
unsigned int gg;
unsigned int bb;

sscanf(&buf[5], "%d %d %u %u %u %u %u",
&xx, &yy, &ww, &hh,
&rr, &gg, &bb

);
xx += X_OFFSET;
yy += Y_OFFSET;

SDL_Rect rect;
rect.x = xx;
rect.y = yy;
rect.w = ww;
rect.h = hh;

::SDL_FillRect(
this->screen,
&rect,
::SDL_MapRGB(this->screen->format, rr, gg, bb)

);

November 15, 2001 nws/help.nw 89

To center text, we simply read the x and y location, then we offset the
position by the offsets of the help screen area. Then, we blit the message using
the appropriate method on the font class.
〈Help Load handle text-center〉≡

unsigned int xx;
unsigned int yy;

sscanf(&buf[12], "%u %u", &xx, &yy);

xx += X_OFFSET;
yy += Y_OFFSET;

char* ptr = strrchr(buf, ’"’);
*ptr = ’\0’;

ptr = strchr(buf, ’"’);
if (ptr != 0) {

this->font->centerMessage(
this->screen, false,
xx, yy,
"%s", &ptr[1]

);
}

November 15, 2001 nws/help.nw 90

To display an image, we read in the x and y coordinates of the image. We
offset those coordinates by the offset of the help viewing area. Then, we load
the image, blit it, and release it.
〈Help Load handle image〉≡

char base[256];
unsigned int xx;
unsigned int yy;

sscanf(&buf[6], "%s %u %u", base, &xx, &yy);
xx += X_OFFSET;
yy += Y_OFFSET;

sprintf(buf, "../../data/%s.png", base);
SDL_Surface* img = ::IMG_Load(buf);

if (img != 0) {
SDL_Rect rect;
rect.x = xx;
rect.y = yy;

::SDL_BlitSurface(img, 0, this->screen, &rect);
::SDL_FreeSurface(img);

}

November 15, 2001 nws/help.nw 91

To display a subimage, we read in the x and y coordinates of the image and
the portion of the image to blit. We offset those coordinates by the offset of the
help viewing area. Then, we load the image, blit it, and release it.
〈Help Load handle subimage〉≡

char base[256];
unsigned int xx;
unsigned int yy;
unsigned int sx;
unsigned int sy;
unsigned int sw;
unsigned int sh;

sscanf(&buf[9], "%s %u %u %d %d %u %u",
base, &xx, &yy,
&sx, &sy, &sw, &sh

);

xx += X_OFFSET;
yy += Y_OFFSET;

sprintf(buf, "../../data/%s.png", base);
SDL_Surface* img = ::IMG_Load(buf);

if (img != 0) {
SDL_Rect src;
src.x = sx;
src.y = sy;
src.w = sw;
src.h = sh;

SDL_Rect rect;
rect.x = xx;
rect.y = yy;
rect.w = src.w;
rect.h = src.h;

::SDL_BlitSurface(img, &src, this->screen, &rect);
::SDL_FreeSurface(img);

}

November 15, 2001 nws/help.nw 92

And, to handle a hotspot, we record the basename of the file it refers to and
the bounds of the hotspot. This is inherently unsafe. The “%s” in the sscanf()
call could easily overflow the 128 characters we allocated for fname. But, since
I am creating the help files, too, I’m not going to make this code overly robust
at the moment.
〈Help Load handle button〉≡

sscanf(&buf[7], "%s %u %u %u %u",
this->hotSpots[this->hotSpotCount].fname,
&this->hotSpots[this->hotSpotCount].x,
&this->hotSpots[this->hotSpotCount].y,
&this->hotSpots[this->hotSpotCount].w,
&this->hotSpots[this->hotSpotCount].h

);
this->hotSpots[this->hotSpotCount].x += X_OFFSET;
this->hotSpots[this->hotSpotCount].y += Y_OFFSET;
++this->hotSpotCount;

To handle an update, we read in the coordinates to update and we refresh
them.
〈Help Load handle update〉≡

unsigned int xx;
unsigned int yy;
unsigned int ww;
unsigned int hh;

sscanf(&buf[7], "%u %u %u %u", &xx, &yy, &ww, &hh);
xx += X_OFFSET;
yy += Y_OFFSET;

::SDL_UpdateRect(this->screen, xx, yy, ww, hh);

9.4 The Help class

In this section, we assemble the Help class from the pieces in the sections above.
The Help class starts off by defining its constructor and destructor.

〈Help Class Definition〉≡
public:

〈Help Constructor Declaration〉
〈Help Destructor Declaration〉

November 15, 2001 nws/help.nw 93

The Help class then defines the method it uses to field mouse clicks from
the View class and the method it uses internally to see if a mouse click is inside
a hot spot.
〈Help Class Definition〉+≡

public:
〈Help Mouse Click Declaration〉

private:
〈Help Mouse Check Hot Spot Declaration〉

The Help class then defines the method it uses to load a help file.
〈Help Class Definition〉+≡

private:
〈Help Load Declaration〉

Then, the view class declares its instance variables.
〈Help Class Definition〉+≡

private:
〈Help View〉
〈Help Screen〉
〈Help Font〉
〈Help Hot Spots〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Help Class Declaration〉≡

class Help {
〈Help Class Definition〉

};

9.5 The help.h file

In this section, we assemble the header file for the Help class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our own
name space so that we can keep the global namespace squeaky clean. And, we
pre-declare the View class so that we don’t get into circular header dependencies.
〈help.h〉≡

namespace 〈NameSpace〉 {
class View;
〈Help Class Declaration〉

};

November 15, 2001 nws/help.nw 94

9.6 The help.cpp file

There is not much to the help.cpp source file at the moment. It contains the
include files it needs for the SDL interactions. It also contains the header file
generated in the previous section and the header files which let it use the Font
class and the View class.
〈help.cpp〉≡

#include <assert.h>
#include <SDL.h>
#include <SDL_image.h>
#include <string.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "font.h"
#include "help.h"

The implementation file includes the source code for the constructor and
destructor for the Help class.
〈help.cpp〉+≡

〈Help Constructor Implementation〉
〈Help Destructor Implementation〉

Next, the implementation file includes the source code for the mouse click
handler and the method it uses internally to tell if a hot spot was pressed.
〈help.cpp〉+≡

〈Help Mouse Click Implementation〉
〈Help Mouse Check Hot Spot Implementation〉

Finally, the implementation file includes the source code for the method
which loads new help files.
〈help.cpp〉+≡

〈Help Load Implementation〉

November 15, 2001 95

Part III

The Flip Flop Game

10 Flip Flop

The namespace inside the flip-flop class is a concatenation of the general names-
pace and the name of the flip-flop class.
〈FlipFlopNameSpace〉≡
〈NameSpace〉::FlipFlop
The FlipFlop class keeps a pointer to the cube used for the game.

〈FlipFlop Cube〉≡
Cube* cube;

The FlipFlop class also tracks the number of dimensions that are being
used. It needs this information so that it can properly determine the neighbors
of a given point.
〈FlipFlop Dimensions〉≡

unsigned int dims;

And, the FlipFlop class tracks the current skill level.
〈FlipFlop Skill Level〉≡

unsigned int skillLevel;

The FlipFlop class also keeps track of whether or not it is wrapping around.
This is necessary so that it can properly determine neighbors of things near the
edge.
〈FlipFlop Wrap〉≡

bool wrap;

The FlipFlop class also keeps track of the number of cells which are cur-
rently on. This is used to track the winning condition.
〈FlipFlop On Count〉≡

int onCount;

Also, to track the winning condition, there is a flag that tells whether the
game has already been won or not. After a person wins, she can play around
on the board as much as she likes before hitting the “New” button.
〈FlipFlop Has Won〉≡

bool hasWon;

In addition, the game also tracks how many moves were expected and how
many moves were taken. These can be used to give feedback to the player. At
the moment, these are not used at all.
〈FlipFlop Move Counters〉≡

unsigned int actualMoves;
unsigned int expectedMoves;

November 15, 2001 96

The FlipFlop class also keeps track of the view pointer.
〈FlipFlop View〉≡

FlipFlopView* view;

10.1 The Constructor

The constructor for the FlipFlop class takes five arguments. The first is a
pointer to the game cube, the second specifies the number of dimensions to
employ, the third specifies the skill level to use, the fourth specifies whether the
edges wrap around, and the fifth is an optional pointer to the view to update
when cells change.
〈FlipFlop Constructor Declaration〉≡

FlipFlop(
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true,
FlipFlopView* _view = 0

);

The constructor for the FlipFlop class copies the arguments into its local
variables. Then, it calls its own reset method to start a new game. But, first,
it verifies that all of the input arguments match its range expectations.
〈FlipFlop Constructor Implementation〉≡

〈FlipFlopNameSpace〉::FlipFlop(
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap,
FlipFlopView* _view

) : cube(_cube),
dims(_dims),
skillLevel(_skillLevel),
wrap(_wrap),
view(_view)

{
assert(cube != 0);
assert(dims >= 1);
assert(dims <= 〈CubeNameSpace〉::DIMENSIONS);
assert(skillLevel < 3);
this->reset();

}

November 15, 2001 97

10.2 The Reset Method

This method is used to start a new game. It requires no parameters. It assumes
that both the number of dimensions and the wrap mode have already been set.
〈FlipFlop Reset Declaration〉≡

void reset(void);

The cube is cleared. Then, the skill level is used to determine the number
of cells to toggle. Then, the toggles are performed, the statistics are reset, and
the view is refreshed.
〈FlipFlop Reset Implementation〉≡

void
〈FlipFlopNameSpace〉::reset(void)
{

*this->cube = 0;
this->onCount = 0;

〈FlipFlop ToggleTable〉
unsigned int toggles = table[this->dims][this->skillLevel];
unsigned int len

= 〈CubeNameSpace〉::arrayLengths[this->dims];

〈FlipFlop Perform Flips〉
〈FlipFlop Reset Current Statistics〉

if (this->view != 0) {
this->view->reset();
this->view->redraw();

}
}

The following table is used to determine the number of cells to toggle based
upon the number of dimensions and the skill level.
〈FlipFlop ToggleTable〉≡

unsigned int table[Cube::DIMENSIONS+1][3] = {
{ 0, 0, 0 },
{ 1, 2, 3 },
{ 3, 5, 8 },
{ 5, 8, 12 },
{ 8, 16, 32 },

};

November 15, 2001 98

We want to be careful not to flip the same cell twice. So, we make a lookup
table of cells we’ve already flipped. Then, we go through and perform each flip.
〈FlipFlop Perform Flips〉≡

unsigned int* lut = new unsigned int[toggles];
unsigned int lutLen = 0;

for (unsigned int ii=0; ii < toggles; ++ii) {
〈FlipFlop Perform Single Flip〉

}

delete[] lut;

Each time we want to flip, we pick an index from the available range. Then,
we loop through the lookup table incrementing index each time we find a number
that is less than or equal to index. This makes index be the index-th number
which has not yet been chosen. Then, we perform the flip and add index into
the lookup table.
〈FlipFlop Perform Single Flip〉≡

unsigned int index = random() % len--;
for (unsigned int jj=0; jj < lutLen; ++jj) {

if (index >= lut[jj]) {
++index;

}
}

this->flip(index, false);

〈FlipFlop Add Index Into Flip LUT 〉
Here, we put it at the end of the lookup table. Then, we keep trying to swap

it with the element before it in the list until we come to an element before it
that is less than it. We need to keep the lookup table sorted for the previous
incrementing loop to work right. This is just a simple bit of a bubble sort where
we know that the only element potentially out of place is the last one.
〈FlipFlop Add Index Into Flip LUT 〉≡

unsigned int spot = lutLen;
while (spot > 0 && lut[spot-1] > index) {

lut[spot] = lut[spot-1];
--spot;

}
lut[spot] = index;
++lutLen;

November 15, 2001 99

Resetting the statistics for the current game is easy. It is expected that the
number of moves that it will take to solve the puzzle is the same as the number
of toggles. However, it could quite possibly take fewer moves, so we shouldn’t
rely upon this metric.
〈FlipFlop Reset Current Statistics〉≡

this->hasWon = false;
this->actualMoves = 0;
this->expectedMoves = toggles;

10.3 The Flip Method

The flip method will be used in the reset() method above and by the flip-flop
controller to register moves. It will simply toggle the cube entry at index and
at each of index’s neighbors.
〈FlipFlop Flip Declaration〉≡

void flip(unsigned int index, bool update = true);

The flip method itself simply calls the getNeighbors() method of the cube
to determine the neighbors. Then, it flips the cell at index and at each of the
neighbors of that cell.
〈FlipFlop Flip Implementation〉≡

void
〈FlipFlopNameSpace〉::flip(

unsigned int index, bool update
)

{
unsigned int nn[2 * 〈CubeNameSpace〉::DIMENSIONS];
unsigned int nc = this->cube->getNeighbors(

nn, index, this->dims, this->wrap
);

〈FlipFlop Increment Move Count〉
〈FlipFlop Flip Single Cell〉

for (unsigned int ii=0; ii < nc; ++ii) {
index = nn[ii];
〈FlipFlop Flip Single Cell〉

}

〈FlipFlop Check Winning Condition〉
}

November 15, 2001 100

When flipping a single cell, we must track whether this increased or decreased
the number of “on” cells on the board.
〈FlipFlop Flip Single Cell〉≡

if (((*this->cube)[index] ^= 1) == 0) {
--this->onCount;

} else {
++this->onCount;

}

Additionally, if we have been asked to update the cell’s image on the screen
and we’ve been supplied a view to update, then we will tell the view to redraw
the element at this index.
〈FlipFlop Flip Single Cell〉+≡

if (update && this->view != 0) {
this->view->redraw(index);

}

We increment the actual number of moves the user has taken so long as the
user has not already won. Either way, if we are updating, and we have a view,
we’ll play the move noise.
〈FlipFlop Increment Move Count〉≡

if (! this->hasWon) {
++this->actualMoves;

}
if (update && this->view != 0) {

this->view->moveNoise();
}

Once all the things have been flipped for this, we have to check the winning
condition. However, we only check this during update mode. If it’s not during
update, then we stand of chance of congratulating the player while we’re still
setting up the board. But, if we’re in update mode, the user hasn’t won, and
the number of on pieces on the board is currently zero, that’s a victory.
〈FlipFlop Check Winning Condition〉≡

if (update && ! this->hasWon && this->onCount == 0) {
this->hasWon = true;
if (this->view != 0) {

this->view->showWinning(
this->actualMoves, this->expectedMoves

);
}

}

November 15, 2001 101

10.4 The FlipFlop class

In this section, we assemble the FlipFlop class from the pieces in the sections
above.

The first thing incorporated into the class definition is the declaration of the
constructor
〈FlipFlop Class Definition〉≡

public:
〈FlipFlop Constructor Declaration〉

After that, the reset method is declared.
〈FlipFlop Class Definition〉+≡

public:
〈FlipFlop Reset Declaration〉

After that, the flip method is declared.
〈FlipFlop Class Definition〉+≡

public:
〈FlipFlop Flip Declaration〉

The data members of the FlipFlop class all have private scope. The data
members specify the cube, the number of dimensions, the skill level, the wrap-
ping mode, the number of on elements currently, the variables for tracking the
winning state, and the pointer to the view class if one was given.
〈FlipFlop Class Definition〉+≡

private:
〈FlipFlop Cube〉
〈FlipFlop Dimensions〉
〈FlipFlop Skill Level〉
〈FlipFlop Wrap〉
〈FlipFlop On Count〉
〈FlipFlop Has Won〉
〈FlipFlop Move Counters〉
〈FlipFlop View〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈FlipFlop Class Declaration〉≡

class FlipFlop {
〈FlipFlop Class Definition〉

};

November 15, 2001 102

10.5 The flipflop.h file

In this section, we assemble the header file for the FlipFlop class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈flipflop.h〉≡

namespace 〈NameSpace〉 {
〈FlipFlop Class Declaration〉

};

10.6 The flipflop.cpp file

For the actual C++ source code, we include the header file that defines assert(),
the header file for random(), the header file for the SDL stuff needed by the
view.h file, the header file for the cube, the header file for the generic view
class, the header file for the view class for this particular game, and the header
file generated in the previous section.
〈flipflop.cpp〉≡

#include <assert.h>
#include <stdlib.h>
#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "flipflopView.h"
#include "flipflop.h"

Then, the source file incorporates the implementation of the constructor.
〈flipflop.cpp〉+≡

〈FlipFlop Constructor Implementation〉
After that, the source file incorporates the implementation of the reset

method.
〈flipflop.cpp〉+≡

〈FlipFlop Reset Implementation〉
The source file also contains the implementation of the flip method.

〈flipflop.cpp〉+≡
〈FlipFlop Flip Implementation〉

November 15, 2001 nws/fcontrol.nw 103

11 The FlipFlop Game Controller

The namespace inside the FlipFlop controller class is a concatenation of the
general namespace and the name of the FlipFlop controller class.
〈FlipFlopCNameSpace〉≡
〈NameSpace〉::FlipFlopController
The FlipFlop game controller inherits from the generic game controller of

§5. It actually controls the initialization and game action of the FlipFlop game.
It fields the mouse clicks and converts them from screen coordinates into cell
coordinates. And, it fields events from the view sidebar that set the difficulty
level and set the wrap mode and set the dimensions and reset the game.

The FlipFlop game controller contains an instance of the FlipFlop game
view.
〈FlipFlopC View〉≡

FlipFlopView view;

The FlipFlop game controller also contains a pointer to the current instance
of the game model.
〈FlipFlopC Model〉≡

FlipFlop* model;

11.1 The Constructor and Destructor

The constructor for the FlipFlop controller class takes six arguments. The first
is a pointer to the screen, the second is a pointer to the sound device, the third
is a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth specifies the skill level to use, and the last specifies whether
the edges wrap around.
〈FlipFlopC Constructor Declaration〉≡

FlipFlopController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/fcontrol.nw 104

The constructor for the FlipFlop controller class simply passes most of its ar-
guments to the Controller constructor. Then, it calls its own reset() method
to allocate a new instance of the FlipFlop class.
〈FlipFlopC Constructor Implementation〉≡

〈FlipFlopCNameSpace〉::FlipFlopController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : Controller(_cube, _dims, _skillLevel, _wrap),
view(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
model(0)

{
this->view.backgroundMusic();
this->reset();

}

The destructor for the FlipFlop controller class deletes the stored model for
the FlipFlop game.
〈FlipFlopC Destructor Declaration〉≡

virtual ~FlipFlopController(void);

〈FlipFlopC Destructor Implementation〉≡
〈FlipFlopCNameSpace〉::~FlipFlopController(void)
{

this->view.backgroundMusic(true);
delete this->model;

}

11.2 The Reset Method

The FlipFlopController class has a method called reset(). It uses this
method to create a new instance of the FlipFlop game model.
〈FlipFlopC Reset Declaration〉≡

void reset(void);

November 15, 2001 nws/fcontrol.nw 105

The method first deletes the old model and then creates a new model.
〈FlipFlopC Reset Implementation〉≡

void
〈FlipFlopCNameSpace〉::reset(void)
{

delete this->model;
this->model = new FlipFlop(

this->cube,
this->dims,
this->skillLevel,
this->wrap,
&this->view

);
}

11.3 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it needs to know which mouse button was pressed.
〈FlipFlopC Mouse Click Declaration〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/fcontrol.nw 106

This method first gives the mouse click to the view to see if any of the
buttons on the sidebar can account for the click. Then, if the view class didn’t
suck it up, it uses a view method to try to determine which cell of the cube was
clicked (if any). If there was a hit, and this is a mouse-down event, then the cell
is toggled.
〈FlipFlopC Mouse Click Implementation〉≡

void
〈FlipFlopCNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

unsigned int index;
bool hit;

hit = this->view.handleMouseClick(
this, isMouseUp, xx, yy, buttonNumber

);

if (!hit) {
hit = 〈ViewNameSpace〉::screenToCell(

xx, yy, this->dims, &index
);

if (hit && ! isMouseUp) {
this->model->flip(index);

}
}

}

11.4 The Game Setting Interface

The following method is invoked by the View class when someone clicks one of
the “dimensions” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈FlipFlopC Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims);

November 15, 2001 nws/fcontrol.nw 107

〈FlipFlopC Game Setting Implementation〉≡
void
〈FlipFlopCNameSpace〉::setDimension(

unsigned int _dims
)

{
if (_dims != this->dims) {

this->dims = _dims;
this->reset();

}
}

The following method is invoked by the View class when someone clicks one
of the “skill level” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈FlipFlopC Game Setting Interface〉+≡

virtual void setSkillLevel(unsigned int _skillLevel);

〈FlipFlopC Game Setting Implementation〉+≡
void
〈FlipFlopCNameSpace〉::setSkillLevel(

unsigned int _skillLevel
)

{
if (_skillLevel != this->skillLevel) {

this->skillLevel = _skillLevel;
this->reset();

}
}

The following method is invoked by the View class when someone clicks on
the “wrap” button on the sidebar. If the button wasn’t already selected, then
this triggers a reset().
〈FlipFlopC Game Setting Interface〉+≡

virtual void setWrap(bool _wrap);

〈FlipFlopC Game Setting Implementation〉+≡
void
〈FlipFlopCNameSpace〉::setWrap(

bool _wrap
)

{
if (_wrap != this->wrap) {

this->wrap = _wrap;
this->reset();

}
}

November 15, 2001 nws/fcontrol.nw 108

The following method is invoked by the View class when someone clicks on
the “new” button on the sidebar. This always triggers a reset().
〈FlipFlopC Game Setting Interface〉+≡

virtual void newGame(void);

〈FlipFlopC Game Setting Implementation〉+≡
void
〈FlipFlopCNameSpace〉::newGame(void)
{

this->reset();
}

11.5 The FlipFlopController class

In this section, we assemble the FlipFlopController class from the pieces in
the sections above.

We include, in the FlipFlopController class, the constructor and the de-
structor.
〈FlipFlopC Class Definition〉≡

public:
〈FlipFlopC Constructor Declaration〉
〈FlipFlopC Destructor Declaration〉

The FlipFlopController class also declares its reset method and the meth-
ods used by the View class to change the game state.
〈FlipFlopC Class Definition〉+≡

private:
〈FlipFlopC Reset Declaration〉

public:
〈FlipFlopC Game Setting Interface〉

We include, in the FlipFlopController class, the method used for mouse
clicks.
〈FlipFlopC Class Definition〉+≡

public:
〈FlipFlopC Mouse Click Declaration〉

The FlipFlopController class also contains the member variables which
were defined at the beginning of this section of the document.
〈FlipFlopC Class Definition〉+≡

private:
〈FlipFlopC View〉
〈FlipFlopC Model〉

November 15, 2001 nws/fcontrol.nw 109

Once these declarations are all done, we throw all of these together into
the class declaration itself. The FlipFlopController inherits directly from the
Controller class of §5.
〈FlipFlopC Class Declaration〉≡

class FlipFlopController : public Controller {
〈FlipFlopC Class Definition〉

};

11.6 The flipflopController.h file

In this section, we assemble the header file for the FlipFlopController class. It
is really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈flipflopController.h〉≡

namespace 〈NameSpace〉 {
〈FlipFlopC Class Declaration〉

};

11.7 The flipflopController.cpp file

In this section, we assemble the FlipFlop controller source file. It requires the
header files for the Cube class, the Controller class, and the FlipFlopController
classes.
〈flipflopController.cpp〉≡

#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "controller.h"
#include "view.h"
#include "flipflopView.h"
#include "flipflop.h"
#include "flipflopController.h"

After the header files, we include the implementations of the constructor and
destructor.
〈flipflopController.cpp〉+≡

〈FlipFlopC Constructor Implementation〉
〈FlipFlopC Destructor Implementation〉

After the constructor and destructor, the implementation of the reset()
method and the game state methods are also included.
〈flipflopController.cpp〉+≡

〈FlipFlopC Reset Implementation〉
〈FlipFlopC Game Setting Implementation〉

November 15, 2001 nws/fcontrol.nw 110

Then, we include the implementation of the method used to field mouse
clicks.
〈flipflopController.cpp〉+≡

〈FlipFlopC Mouse Click Implementation〉

November 15, 2001 nws/fview.nw 111

12 The FlipFlop Game View

The namespace inside the FlipFlop view class is a concatenation of the general
namespace and the name of the FlipFlop view class.
〈FlipFlopVNameSpace〉≡
〈NameSpace〉::FlipFlopView
The FlipFlop game view inherits from the generic game view of §6. It dis-

plays the current state of the FlipFlop game.
The FlipFlop game stores pointers to the images of the tile pieces to use.

〈FlipFlop Tiles〉≡
SDL_Surface* on;
SDL_Surface* off;

12.1 The Constructor

The constructor for the FlipFlop view class takes six arguments. The first is a
pointer to the screen, the second is a pointer to the sound device, the third is
a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth is the skill level, and the sixth is the wrapping mode.
〈FlipFlopV Constructor Declaration〉≡

FlipFlopView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

The constructor for the FlipFlop view class passes all of its arguments to
the View constructor. Then, it loads the images for on and off cells.
〈FlipFlopV Constructor Implementation〉≡

〈FlipFlopVNameSpace〉::FlipFlopView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : View(_screen, _sound, _cube, _dims, _skillLevel, _wrap)
{

this->on = ::IMG_Load("../../data/on.png");
this->off = ::IMG_Load("../../data/off.png");

}

November 15, 2001 nws/fview.nw 112

12.2 The Destructor

The destructor for the flip-flop view class simply release the images that it
loaded above in the constructor.
〈FlipFlopV Destructor Declaration〉≡

~FlipFlopView(void);

〈FlipFlopV Destructor Implementation〉≡
〈FlipFlopVNameSpace〉::~FlipFlopView(void)
{

::SDL_FreeSurface(this->off);
::SDL_FreeSurface(this->on);

}

12.3 The Redraw Methods

The FlipFlop view class has a method which allows one to update the entire
display area for the game.
〈FlipFlopV Redraw Declarations〉≡

virtual void redraw(void);

The redraw function here calls the redraw function on the base class to
update the sidebar and the background area of the cube. Then, it runs through
each cell in the cube, drawing it. After that, it updates the whole screen.
〈FlipFlopV Redraw Implementations〉≡

void
〈FlipFlopVNameSpace〉::redraw(void)
{

this->View::redraw();

unsigned int maxIndex
= 〈CubeNameSpace〉::arrayLengths[this->dims];

for (unsigned int index=0; index < maxIndex; ++index) {
this->drawCell(index, false);

}

::SDL_UpdateRect(this->screen, 0, 0, 0, 0);
}

The FlipFlop view class has a method which allows one to update a single
cell of the cube by index.
〈FlipFlopV Redraw Declarations〉+≡

virtual void redraw(unsigned int index);

November 15, 2001 nws/fview.nw 113

This method simply uses the method defined next to draw the single cell in
question.
〈FlipFlopV Redraw Implementations〉+≡

void
〈FlipFlopVNameSpace〉::redraw(unsigned int index)
{

this->drawCell(index);
}

The FlipFlop view class has a method to draw a single cell of the cube. It
uses this method in each of the above methods.
〈FlipFlopV Private Draw Declaration〉≡

void drawCell(unsigned int index, bool update = true);

To draw a single cell, this method retrieves the screen coordinates of the cell
from the conversion method in the base class. Then, it prepares a rectangle to
fill for the cell. Then, depending on the state of the cell in the game cube, it
either draws the region off or on.
〈FlipFlopV Private Draw Implementation〉≡

void
〈FlipFlopVNameSpace〉::drawCell(

unsigned int index, bool update
)

{
unsigned int xx;
unsigned int yy;

View::cellToScreen(index, this->dims, &xx, &yy);

〈FlipFlopV Prepare Single Cell Rect〉

if ((*this->cube)[index] == 0) {
::SDL_BlitSurface(this->off, 0, this->screen, &rect);

} else {
::SDL_BlitSurface(this->on, 0, this->screen, &rect);

}
if (update) {

::SDL_UpdateRect(this->screen, xx, yy, SQUARE, SQUARE);
}

}

November 15, 2001 nws/fview.nw 114

The rectangle that will be filled to represent the cell simply starts at the
starting coordinates of the rectangle and goes almost the full size of the cell. It
doesn’t go quite to the edge so that one can clearly see the break between cells.
〈FlipFlopV Prepare Single Cell Rect〉≡

SDL_Rect rect;
rect.x = xx;
rect.y = yy;
rect.w = SQUARE-1;
rect.h = SQUARE-1;

12.4 The FlipFlopView class

In this section, we assemble the FlipFlopView class from the pieces in the
sections above.

We include, in the FlipFlopView class, the constructor, the destructor and
the redraw methods.
〈FlipFlopV Class Definition〉≡

public:
〈FlipFlopV Constructor Declaration〉
〈FlipFlopV Destructor Declaration〉
〈FlipFlopV Redraw Declarations〉

private:
〈FlipFlopV Private Draw Declaration〉

We include the variables that are used in the flipflop view class.
〈FlipFlopV Class Definition〉+≡

private:
〈FlipFlop Tiles〉

Once these declarations are all done, we throw all of these together into the
class declaration itself. The FlipFlopView inherits directly from the View class
of §6.
〈FlipFlopV Class Declaration〉≡

class FlipFlopView : public View {
〈FlipFlopV Class Definition〉

};

November 15, 2001 nws/fview.nw 115

12.5 The flipflopView.h file

In this section, we assemble the header file for the FlipFlopView class. It is
really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈flipflopView.h〉≡

namespace 〈NameSpace〉 {
〈FlipFlopV Class Declaration〉

};

12.6 The flipflopView.cpp file

In this section, we assemble the FlipFlop view source file. It requires the SDL
headers for dealing with surfaces, the screen, blitting, and loading images. It
requires the header files for the Cube class, the SoundDev class, the View class,
and the FlipFlopView class itself.
〈flipflopView.cpp〉≡

#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "flipflopView.h"

After the header files, we include the implementations of the constructor,
the destructor, and the redraw methods.
〈flipflopView.cpp〉+≡

〈FlipFlopV Constructor Implementation〉
〈FlipFlopV Destructor Implementation〉
〈FlipFlopV Redraw Implementations〉
〈FlipFlopV Private Draw Implementation〉

November 15, 2001 116

Part IV

The Bomb Squad Game

13 Bomb Squad

The namespace inside the bomb squad class is a concatenation of the general
namespace and the name of the bomb squad class.
〈BombSquadNameSpace〉≡
〈NameSpace〉::BombSquad
The BombSquad class uses several flags to track what has happened in a cell.

These flags tell if the cell has been uncovered, if it contains a bomb, and if it
contains a flag.
〈BombSquad Flags〉≡

enum {
UNCOVERED = 0x1000,
BOMB = 0x2000,
FLAG = 0x4000

};

The BombSquad class keeps a pointer to the cube used for the game.
〈BombSquad Cube〉≡

Cube* cube;

The BombSquad class also tracks the number of dimensions that are being
used. It needs this information so that it can properly determine the neighbors
of a given point.
〈BombSquad Dimensions〉≡

unsigned int dims;

And, the BombSquad class tracks the current skill level.
〈BombSquad Skill Level〉≡

unsigned int skillLevel;

The BombSquad class also keeps track of whether or not it is wrapping around.
This is necessary so that it can properly determine neighbors of things near the
edge.
〈BombSquad Wrap〉≡

bool wrap;

In addition, the game also tracks how many bombs are out there, how many
flags have been placed, and how many cells are currently still coverred.
〈BombSquad Move Counters〉≡

unsigned int bombCount;
unsigned int flagCount;
unsigned int coveredCount;

November 15, 2001 117

The class also tracks whether the game has ended: either because the player
won or by a very loud explosion.
〈BombSquad Game Over〉≡

bool gameOver;

The BombSquad class also keeps track of the view pointer.
〈BombSquad View〉≡

BombSquadView* view;

13.1 The Constructor

The constructor for the BombSquad class takes five arguments. The first is a
pointer to the game cube, the second specifies the number of dimensions to
employ, the third specifies the skill level to use, the fourth specifies whether the
edges wrap around, and the fifth is an option pointer to the view to update
when cells change.
〈BombSquad Constructor Declaration〉≡

BombSquad(
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true,
BombSquadView* _view = 0

);

November 15, 2001 118

The constructor for the BombSquad class copies the arguments into its local
variables. Then, it calls its own reset method to start a new game. But, first,
it verifies that all of the input arguments match its range expectations.
〈BombSquad Constructor Implementation〉≡

〈BombSquadNameSpace〉::BombSquad(
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap,
BombSquadView* _view

) : cube(_cube),
dims(_dims),
skillLevel(_skillLevel),
wrap(_wrap),
view(_view)

{
assert(cube != 0);
assert(dims > 1);
assert(dims <= 〈CubeNameSpace〉::DIMENSIONS);
assert(〈CubeNameSpace〉::DIMENSIONS <= 4);
assert(skillLevel < 3);
this->reset();

}

13.2 The Reset Method

This method is used to start a new game. It requires no parameters. It assumes
that both the number of dimensions and the wrap mode have already been set.
〈BombSquad Reset Declaration〉≡

void reset(void);

November 15, 2001 119

The cube is cleared. Then, the skill level is used to determine the number
of cells to bomb.
〈BombSquad Reset Implementation〉≡

void
〈BombSquadNameSpace〉::reset(void)
{

*this->cube = 0;

〈BombSquad SkillTable〉
unsigned int bombs = table[this->dims][this->skillLevel];
unsigned int len

= 〈CubeNameSpace〉::arrayLengths[this->dims];

〈BombSquad Add Bombs〉
〈BombSquad Reset Current Statistics〉

if (this->view != 0) {
this->view->reset();
this->view->redraw();

}
}

The following table is used to determine the number of bombs to place based
upon the number of dimensions and the skill level.
〈BombSquad SkillTable〉≡

unsigned int table[Cube::DIMENSIONS+1][3] = {
{ 0, 0, 0 },
{ 1, 2, 3 },
{ 2, 4, 8 },
{ 4, 8, 16 },
{ 16, 32, 64 },

};

We want to be careful not to place a bomb in the same cell twice. So, we
make a lookup table of cells we’ve already bombed. Then, we go through and
plant each bomb.
〈BombSquad Add Bombs〉≡

unsigned int* lut = new unsigned int[bombs];
unsigned int lutLen = 0;

for (unsigned int ii=0; ii < bombs; ++ii) {
〈BombSquad Add Single Bomb〉

}

delete[] lut;

November 15, 2001 120

Each time we want to bomb, we pick an index from the available range.
Then, we loop through the lookup table incrementing index each time we find
a number that is less than or equal to index. This makes index be the index-th
number which has not yet been chosen. Then, we add the bomb and add index
into the lookup table.
〈BombSquad Add Single Bomb〉≡

unsigned int index = random() % len--;
for (unsigned int jj=0; jj < lutLen; ++jj) {

if (index >= lut[jj]) {
++index;

}
}

(*this->cube)[index] |= BOMB;
〈BombSquad Increment Counts〉

〈BombSquad Add Index Into LUT 〉
Here, we put it at the end of the lookup table. Then, we keep trying to swap

it with the element before it in the list until we come to an element before it
that is less than it. We need to keep the lookup table sorted for the previous
incrementing loop to work right. This is just a simple bit of a bubble sort where
we know that the only element potentially out of place is the last one.
〈BombSquad Add Index Into LUT 〉≡

unsigned int spot = lutLen;
while (spot > 0 && lut[spot-1] > index) {

lut[spot] = lut[spot-1];
--spot;

}
lut[spot] = index;
++lutLen;

Once a bomb has been placed, we increment the counts on each of its neigh-
bors.
〈BombSquad Increment Counts〉≡

unsigned int nn[2 * 〈CubeNameSpace〉::DIMENSIONS];
unsigned int nc;

nc = 〈CubeNameSpace〉::getNeighbors(
nn, index, this->dims, this->wrap

);
for (unsigned int jj=0; jj < nc; ++jj) {

++(*this->cube)[nn[jj]];
}

November 15, 2001 121

Resetting the statistics for the current game is easy. The number of bombs
placed is the number that are there. The number of flags placed is zero. And,
the number of cells which are covered is the number of cells in this cube.
〈BombSquad Reset Current Statistics〉≡

this->bombCount = bombs;
this->flagCount = 0;
this->coveredCount

= 〈CubeNameSpace〉::arrayLengths[this->dims];
this->gameOver = false;

13.3 The Uncover Method

This method is used by the controller to reveal a cell. If the cell was entirely
empty, then all of its neighbors are also uncovered.
〈BombSquad Uncover Declaration〉≡

void uncover(unsigned int index, bool click = true);

If the current cell has not yet been uncovered, it is marked as uncovered. If
the cell has no neighboring bombs, then all of its neighbors are uncovered.
〈BombSquad Uncover Implementation〉≡

void
〈BombSquadNameSpace〉::uncover(

unsigned int index, bool click
)

{
unsigned int cell = (*this->cube)[index];
if ((cell & (UNCOVERED | FLAG)) == 0) {

〈BombSquad Register Move〉
〈BombSquad Uncover Single Cell〉

if ((cell & BOMB) != 0) {
〈BombSquad Uncover Bomb〉

} else if ((cell & 0x0FFF) == 0) {
〈BombSquad Uncover Neighbors〉

}

if (click) {
this->checkWinningCondition();

}
}

}

November 15, 2001 122

We update the count of cells which are covered. And, if we have a view and
this is for the user’s click, then we make a move noise.
〈BombSquad Register Move〉≡

--this->coveredCount;
if (click && this->view != 0) {

this->view->moveNoise();
}

First, we’ll mark this particular cell as uncovered.
〈BombSquad Uncover Single Cell〉≡

(*this->cube)[index] |= UNCOVERED;

Additionally, if we have been supplied a view to update, then we will tell
the view to redraw the element at this index.
〈BombSquad Uncover Single Cell〉+≡

if (this->view != 0) {
this->view->redraw(index);

}

If the person uncovered a bomb, then they have lost. If the game isn’t
already over, then we display the losing message.
〈BombSquad Uncover Bomb〉≡

if (! this->gameOver) {
this->gameOver = true;
if (this->view != 0) {

this->view->showLosing();
}

}

To uncover the neighbors of a cell, we simply retrieve the list of neighbors
and uncover each one.
〈BombSquad Uncover Neighbors〉≡

unsigned int nn[2 * 〈CubeNameSpace〉::DIMENSIONS];
unsigned int nc = this->cube->getNeighbors(

nn, index, this->dims, this->wrap
);

for (unsigned int ii=0; ii < nc; ++ii) {
this->uncover(nn[ii], false);

}

13.4 The Toggle Flag Method

This method is used by the controller to toggle the flag setting on a cell.
〈BombSquad Toggle Flag Declaration〉≡

void toggleFlag(unsigned int index);

November 15, 2001 123

This method first checks to make sure that the cell isn’t already uncovered.
If it isn’t, then this method toggles the FLAG flag on this cell of the cube. Then,
it updates the counter appropriately. Then, it redraws the current cell and
checks for a winning condition.
〈BombSquad Toggle Flag Implementation〉≡

void
〈BombSquadNameSpace〉::toggleFlag(

unsigned int index
)

{
if (((*this->cube)[index] & UNCOVERED) == 0) {

(*this->cube)[index] ^= FLAG;

〈BombSquad ToggleFlag Update Flag Count〉

if (this->view != 0) {
this->view->moveNoise();
this->view->redraw(index);

}

this->checkWinningCondition();
}

}

To update the current count, we have to see if the flag was left in the set or
unset position. If the flag was unset, we decrement. If it was set, we increment.
〈BombSquad ToggleFlag Update Flag Count〉≡

if (((*this->cube)[index] & FLAG) == 0) {
--this->flagCount;

} else {
++this->flagCount;

}

13.5 Checking for a Win

After things have been uncovered or a flag has been planted, we have to check
the winning condition. If the game isn’t already over, then we have to check
to make sure that flag count is the same as the bomb count and the number of
cells still covered is the same as the bomb count.
〈BombSquad Check Winning Condition Declaration〉≡

void checkWinningCondition(void);

November 15, 2001 124

〈BombSquad Check Winning Condition Implementation〉≡
void
〈BombSquadNameSpace〉::checkWinningCondition(void) {

if (! this->gameOver
&& this->flagCount == this->bombCount
&& this->coveredCount == this->bombCount) {

this->gameOver = true;
if (this->view != 0) {

this->view->showWinning(
this->flagCount, this->bombCount

);
}

}
};

13.6 The BombSquad class

In this section, we assemble the BombSquad class from the pieces in the sections
above.

The first thing incorporated into the class definition is the declaration of its
internal flags.
〈BombSquad Class Definition〉≡

public:
〈BombSquad Flags〉

The next thing incorporated into the class definition is the declaration of
the constructor
〈BombSquad Class Definition〉+≡

public:
〈BombSquad Constructor Declaration〉

After that, the reset method is declared.
〈BombSquad Class Definition〉+≡

public:
〈BombSquad Reset Declaration〉

After that, the methods are declared to uncover cells and to toggle the flag.
〈BombSquad Class Definition〉+≡

public:
〈BombSquad Uncover Declaration〉
〈BombSquad Toggle Flag Declaration〉

Next, the class includes the inline method used to check for a victory.
〈BombSquad Class Definition〉+≡

private:
〈BombSquad Check Winning Condition Declaration〉

November 15, 2001 125

The data members of the BombSquad class all have private scope. The data
members specify the cube, the number of dimensions, the skill level, the wrap-
ping mode, the move counters, the variables for tracking the winning state, and
the pointer to the view class if one was given.
〈BombSquad Class Definition〉+≡

private:
〈BombSquad Cube〉
〈BombSquad Dimensions〉
〈BombSquad Skill Level〉
〈BombSquad Wrap〉
〈BombSquad Move Counters〉
〈BombSquad Game Over〉
〈BombSquad View〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈BombSquad Class Declaration〉≡

class BombSquad {
〈BombSquad Class Definition〉

};

13.7 The bomb.h file

In this section, we assemble the header file for the BombSquad class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈bomb.h〉≡

namespace 〈NameSpace〉 {
〈BombSquad Class Declaration〉

};

November 15, 2001 126

13.8 The bomb.cpp file

For the actual C++ source code, we include the header file that defines assert(),
the header file for random(), the header file for the SDL stuff needed by the
view.h file, the header file for the cube, the header file for the font, the header
file for the generic view class, the header file for the view class for this particular
game, and the header file generated in the previous section.
〈bomb.cpp〉≡

#include <assert.h>
#include <stdlib.h>
#include <SDL.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "view.h"
#include "bombView.h"
#include "bomb.h"

Then, the source file incorporates the implementation of the constructor.
〈bomb.cpp〉+≡

〈BombSquad Constructor Implementation〉
After that, the source file incorporates the implementation of the reset

method.
〈bomb.cpp〉+≡

〈BombSquad Reset Implementation〉
The source file also contains the implementation of the uncover-a-cell method

and the toggle-the-flag-state method
〈bomb.cpp〉+≡

〈BombSquad Uncover Implementation〉
〈BombSquad Toggle Flag Implementation〉

The source file also contains the implementation for the method which checks
for a win.
〈bomb.cpp〉+≡

〈BombSquad Check Winning Condition Implementation〉

November 15, 2001 nws/bcontrol.nw 127

14 The BombSquad Game Controller

The namespace inside the BombSquad controller class is a concatenation of the
general namespace and the name of the BombSquad controller class.
〈BombSquadCNameSpace〉≡
〈NameSpace〉::BombSquadController
The BombSquad game controller inherits from the generic game controller

of §5. It actually controls the initialization and game action of the BombSquad
game. It fields the mouse clicks and converts them from screen coordinates
into cell coordinates. And, it fields events from the view sidebar that set the
difficulty level and set the wrap mode and set the dimensions and reset the
game.

The BombSquad game controller contains an instance of the BombSquad
game view.
〈BombSquadC View〉≡

BombSquadView view;

The BombSquad game controller also contains a pointer to the current in-
stance of the game model.
〈BombSquadC Model〉≡

BombSquad* model;

14.1 The Constructor and Destructor

The constructor for the BombSquad controller class takes six arguments. The
first is a pointer to the screen, the second is a pointer to the sound device, the
third is a pointer to the game cube, the fourth specifies the number of dimensions
to employ, the fifth specifies the skill level to use, and the last specifies whether
the edges wrap around.
〈BombSquadC Constructor Declaration〉≡

BombSquadController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/bcontrol.nw 128

The constructor for the BombSquad controller class simply passes most of
its arguments to the Controller constructor. Then, it calls its own reset()
method to allocate a new instance of the BombSquad class.
〈BombSquadC Constructor Implementation〉≡

〈BombSquadCNameSpace〉::BombSquadController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : Controller(_cube, _dims, _skillLevel, _wrap),
view(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
model(0)

{
this->view.backgroundMusic();
this->reset();

}

The destructor for the BombSquad controller class deletes the stored model
for the BombSquad game.
〈BombSquadC Destructor Declaration〉≡

virtual ~BombSquadController(void);

〈BombSquadC Destructor Implementation〉≡
〈BombSquadCNameSpace〉::~BombSquadController(void)
{

this->view.backgroundMusic(true);
delete this->model;

}

14.2 The Reset Method

The BombSquadController class has a method called reset(). It uses this
method to create a new instance of the BombSquad game model.
〈BombSquadC Reset Declaration〉≡

void reset(void);

November 15, 2001 nws/bcontrol.nw 129

The method first deletes the old model and then creates a new model.
〈BombSquadC Reset Implementation〉≡

void
〈BombSquadCNameSpace〉::reset(void)
{

delete this->model;
this->model = new BombSquad(

this->cube,
this->dims,
this->skillLevel,
this->wrap,
&this->view

);
}

14.3 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it needs to know which mouse button was pressed.
〈BombSquadC Mouse Click Declaration〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/bcontrol.nw 130

If the hit wasn’t in one of the buttons in the view, this method checks to
see if the click was a mouse-up event on a cell. If it was a mouse-up event on a
cell, then it either uncovers that cell or toggles the flag for that cell depending
on which mouse button was used.
〈BombSquadC Mouse Click Implementation〉≡

void
〈BombSquadCNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

unsigned int index;
bool hit;

hit = this->view.handleMouseClick(
this, isMouseUp, xx, yy, buttonNumber

);

if (!hit) {
hit = 〈ViewNameSpace〉::screenToCell(

xx, yy, this->dims, &index
);

if (hit && ! isMouseUp) {
if (buttonNumber == 1) {

this->model->uncover(index);
} else {

this->model->toggleFlag(index);
}

}
}

}

14.4 The Game Setting Interface

The following method is invoked by the View class when someone clicks one of
the “dimensions” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈BombSquadC Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims);

November 15, 2001 nws/bcontrol.nw 131

〈BombSquadC Game Setting Implementation〉≡
void
〈BombSquadCNameSpace〉::setDimension(

unsigned int _dims
)

{
if (_dims != this->dims) {

this->dims = _dims;
this->reset();

}
}

The following method is invoked by the View class when someone clicks one
of the “skill level” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈BombSquadC Game Setting Interface〉+≡

virtual void setSkillLevel(unsigned int _skillLevel);

〈BombSquadC Game Setting Implementation〉+≡
void
〈BombSquadCNameSpace〉::setSkillLevel(

unsigned int _skillLevel
)

{
if (_skillLevel != this->skillLevel) {

this->skillLevel = _skillLevel;
this->reset();

}
}

The following method is invoked by the View class when someone clicks on
the “wrap” button on the sidebar. If the button wasn’t already selected, then
this triggers a reset().
〈BombSquadC Game Setting Interface〉+≡

virtual void setWrap(bool _wrap);

〈BombSquadC Game Setting Implementation〉+≡
void
〈BombSquadCNameSpace〉::setWrap(

bool _wrap
)

{
if (_wrap != this->wrap) {

this->wrap = _wrap;
this->reset();

}
}

November 15, 2001 nws/bcontrol.nw 132

The following method is invoked by the View class when someone clicks on
the “new” button on the sidebar. This always triggers a reset().
〈BombSquadC Game Setting Interface〉+≡

virtual void newGame(void);

〈BombSquadC Game Setting Implementation〉+≡
void
〈BombSquadCNameSpace〉::newGame(void)
{

this->view.reset();
this->reset();

}

14.5 The BombSquadController class

In this section, we assemble the BombSquadController class from the pieces in
the sections above.

We include, in the BombSquadController class, the constructor and the
destructor.
〈BombSquadC Class Definition〉≡

public:
〈BombSquadC Constructor Declaration〉
〈BombSquadC Destructor Declaration〉

The BombSquadController class also declares its reset method and the
methods used by the View class to change the game state.
〈BombSquadC Class Definition〉+≡

private:
〈BombSquadC Reset Declaration〉

public:
〈BombSquadC Game Setting Interface〉

We include, in the BombSquadController class, the method used for mouse
clicks.
〈BombSquadC Class Definition〉+≡

public:
〈BombSquadC Mouse Click Declaration〉

The BombSquadController class also contains the member variables which
were defined at the beginning of this section of the document.
〈BombSquadC Class Definition〉+≡

private:
〈BombSquadC View〉
〈BombSquadC Model〉

November 15, 2001 nws/bcontrol.nw 133

Once these declarations are all done, we throw all of these together into the
class declaration itself. The BombSquadController inherits directly from the
Controller class of §5.
〈BombSquadC Class Declaration〉≡

class BombSquadController : public Controller {
〈BombSquadC Class Definition〉

};

14.6 The bombController.h file

In this section, we assemble the header file for the BombSquadController class.
It is really straightforward since we assembled the class declaration in the previ-
ous section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈bombController.h〉≡

namespace 〈NameSpace〉 {
〈BombSquadC Class Declaration〉

};

14.7 The bombController.cpp file

In this section, we assemble the BombSquad controller source file. It requires
the header files for the Cube class, the Font class, the SoundDev class, the
Controller class, the View class, the BombView class, the BombSquad game
model, and the BombSquadController classes.
〈bombController.cpp〉≡

#include <SDL.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "controller.h"
#include "view.h"
#include "bombView.h"
#include "bomb.h"
#include "bombController.h"

After the header files, we include the implementations of the constructor and
destructor.
〈bombController.cpp〉+≡

〈BombSquadC Constructor Implementation〉
〈BombSquadC Destructor Implementation〉

November 15, 2001 nws/bcontrol.nw 134

After the constructor and destructor, the implementation of the reset()
method and the game state methods are also included.
〈bombController.cpp〉+≡

〈BombSquadC Reset Implementation〉
〈BombSquadC Game Setting Implementation〉

Then, we include the implementation of the method used to field mouse
clicks.
〈bombController.cpp〉+≡

〈BombSquadC Mouse Click Implementation〉

November 15, 2001 nws/bview.nw 135

15 The BombSquad Game View

The namespace inside the BombSquad view class is a concatenation of the gen-
eral namespace and the name of the BombSquad view class.
〈BombSquadVNameSpace〉≡
〈NameSpace〉::BombSquadView
The BombSquad game view inherits from the generic game view of §6. It

displays the current state of the BombSquad game.
The BombSquad game stores pointers to the images of the tile pieces to use.

〈BombSquad Tiles〉≡
SDL_Surface* covered;
SDL_Surface* uncovered;
SDL_Surface* flagged;
SDL_Surface* bomb;

The BombSquad game stores a pointer to the font to use for displaying the
numbers.
〈BombSquad Font〉≡

Font* font;

The BombSquad game also keeps track of whether or not the game is over.
If the game is over, then it display bombs whether they are uncovered or not.
〈BombSquadV Game Over〉≡

bool gameOver;

15.1 The Constructor

The constructor for the BombSquad view class takes six arguments. The first
is a pointer to the screen, the second is a pointer to the sound device, the third
is a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth is the skill level, and the sixth is the wrapping mode.
〈BombSquadV Constructor Declaration〉≡

BombSquadView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/bview.nw 136

The constructor for the BombSquad view class passes all of its arguments
to the View constructor. Then, it loads the images used to display the tile in
the covered or uncovered state and the overlays for flags and bombs. Then, it
loads the font so that it can draw the help text in the sidebar.
〈BombSquadV Constructor Implementation〉≡

〈BombSquadVNameSpace〉::BombSquadView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : View(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
gameOver(false)

{
this->covered = ::IMG_Load("../../data/covered.png");
this->uncovered = ::IMG_Load("../../data/uncovered.png");
this->flagged = ::IMG_Load("../../data/flagged.png");
this->bomb = ::IMG_Load("../../data/bomb.png");

this->font = new Font();
}

15.2 The Destructor

The destructor for the BombSquad view class simply release the images loaded
above in the constructor.
〈BombSquadV Destructor Declaration〉≡

~BombSquadView(void);

〈BombSquadV Destructor Implementation〉≡
〈BombSquadVNameSpace〉::~BombSquadView(void)
{

delete this->font;

::SDL_FreeSurface(this->bomb);
::SDL_FreeSurface(this->flagged);
::SDL_FreeSurface(this->uncovered);
::SDL_FreeSurface(this->covered);

}

November 15, 2001 nws/bview.nw 137

15.3 The Redraw Methods

The BombSquad view class has a method which allows one to update the entire
display area for the game.
〈BombSquadV Redraw Declarations〉≡

virtual void redraw(void);

The redraw function here calls the redraw function on the base class to
update the sidebar and the background area of the cube. Then, it runs through
each cell in the cube, drawing it. Next, it draws the quick-tip text in the sidebar.
After that, it updates the whole screen.
〈BombSquadV Redraw Implementations〉≡

void
〈BombSquadVNameSpace〉::redraw(void)
{

this->View::redraw();

unsigned int maxIndex
= 〈CubeNameSpace〉::arrayLengths[this->dims];

for (unsigned int index=0; index < maxIndex; ++index) {
this->drawCell(index, false);

}

〈BombSquadV Draw Quick Tip Text〉

::SDL_UpdateRect(this->screen, 0, 0, 0, 0);
}

In the sidebar, we’re going to scribble some hints for the player on what
interactions are available.
〈BombSquadV Draw Quick Tip Text〉≡

this->font->centerMessage(
this->screen, false,
700, 434,
"Click on a tile to reveal it."

);
this->font->centerMessage(

this->screen, false,
700, 474,
"Right-click or Shift-click"

);
this->font->centerMessage(

this->screen, false,
700, 498,
"on a tile to flag it."

);

November 15, 2001 nws/bview.nw 138

The BombSquad view class has a method which allows one to update a single
cell of the cube by index.
〈BombSquadV Redraw Declarations〉+≡

virtual void redraw(unsigned int index);

This method simply uses the method defined next to draw the single cell in
question.
〈BombSquadV Redraw Implementations〉+≡

void
〈BombSquadVNameSpace〉::redraw(unsigned int index)
{

this->drawCell(index);
}

The BombSquad view class has a method to draw a single cell of the cube.
It uses this method in each of the above methods.
〈BombSquadV Private Draw Declaration〉≡

void drawCell(unsigned int index, bool update = true);

November 15, 2001 nws/bview.nw 139

To draw a single cell, this method prepares a rectangle to fill for the cell.
Then, depending on the state of the cell in the game cube, it either draws it as
uncovered or covered. If the game is over or the cell is uncovered, the contents
of the cell (a number or bomb) is shown. If the area is flagged, then the flag is
drawn over the area.
〈BombSquadV Private Draw Implementation〉≡

void
〈BombSquadVNameSpace〉::drawCell(

unsigned int index, bool update
)

{
〈BombSquadV Prepare Single Cell Rect〉

unsigned int cell = (*this->cube)[index];
bool showContents = this->gameOver;

if ((cell & 〈BombSquadNameSpace〉::UNCOVERED) != 0) {
showContents = true;
〈BombSquadV Draw Cell Uncovered〉

} else {
〈BombSquadV Draw Cell Covered〉

}

if (showContents) {
〈BombSquadV Draw Cell Contents〉

}

if ((cell & 〈BombSquadNameSpace〉::FLAG) != 0) {
〈BombSquadV Draw Cell Flag〉

}

if (update) {
::SDL_UpdateRect(this->screen, xx, yy, SQUARE, SQUARE);

}
}

November 15, 2001 nws/bview.nw 140

The rectangle that will be filled to represent the cell simply starts at the
starting coordinates of the cell and goes the full size of the cell.
〈BombSquadV Prepare Single Cell Rect〉≡

unsigned int xx;
unsigned int yy;
View::cellToScreen(index, this->dims, &xx, &yy);

SDL_Rect rect;
rect.x = xx;
rect.y = yy;
rect.w = SQUARE;
rect.h = SQUARE;

The uncovered bitmap is displayed as the backdrop in cells that have already
been uncovered.
〈BombSquadV Draw Cell Uncovered〉≡

::SDL_BlitSurface(this->uncovered, 0, this->screen, &rect);

The covered bitmap is displayed as the backdrop in cells that have not
already been uncovered.
〈BombSquadV Draw Cell Covered〉≡

::SDL_BlitSurface(this->covered, 0, this->screen, &rect);

If the cell contains a bomb, then its contents are the bomb. If the cell
doesn’t contain a bomb, but it does have a non-zero number of neighbors which
are bombs, then the number is displayed.
〈BombSquadV Draw Cell Contents〉≡

unsigned int count = cell & 0x0FFF;

if ((cell & 〈BombSquadNameSpace〉::BOMB) != 0) {
〈BombSquadV Draw Cell Bomb〉

} else if (count > 0) {
this->font->centerMessage(

this->screen, false,
rect.x + rect.w / 2,
rect.y + rect.h / 2 + 8,
"%d", count

);
}

If the cell contains a bomb, we overlay the bomb bitmap.
〈BombSquadV Draw Cell Bomb〉≡

::SDL_BlitSurface(this->bomb, 0, this->screen, &rect);

If the cell is flagged, we overlay the flagged bitmap.
〈BombSquadV Draw Cell Flag〉≡

::SDL_BlitSurface(this->flagged, 0, this->screen, &rect);

November 15, 2001 nws/bview.nw 141

15.4 The Reset Method

The controller needs a way to signal that there is a new game to be played. It
invokes the reset() method defined here.
〈BombSquadV Reset Declaration〉≡

inline void reset(void) {
this->gameOver = false;
this->View::reset();

};

15.5 The Winning Method

Once the game is over, the board must be shown with all of the bombs on it.
To accomplish this, this view class overrides the showWinning() method to set
its own internal flag.
〈BombSquadV Winning Declaration〉≡

virtual void showWinning(
unsigned int actualMoves,
unsigned int expectedMoves

);

The method sets its internal flag, then it redraws the screen with this in
mind. Then, it displays the default winning message.
〈BombSquadV Winning Implementation〉≡

void
〈BombSquadVNameSpace〉::showWinning(

unsigned int actualMoves,
unsigned int expectedMoves

)
{

this->gameOver = true;
this->redraw();
this->View::showWinning(actualMoves, expectedMoves);

}

15.6 The Losing Method

Once the game is over, the board must be shown with all of the bombs on it.
To accomplish this, this view class overrides the showLosing() method to set
its own internal flag.
〈BombSquadV Losing Declaration〉≡

virtual void showLosing(void);

November 15, 2001 nws/bview.nw 142

The method sets its internal flag, then it redraws the screen with this in
mind. Then, it displays the default losing message.
〈BombSquadV Losing Implementation〉≡

void
〈BombSquadVNameSpace〉::showLosing(void)
{

this->gameOver = true;
this->redraw();
this->View::showLosing();

}

15.7 The BombSquadView class

In this section, we assemble the BombSquadView class from the pieces in the
sections above.

We include, in the BombSquadView class, the constructor, the destructor, the
redraw methods, and the reset method.
〈BombSquadV Class Definition〉≡

public:
〈BombSquadV Constructor Declaration〉
〈BombSquadV Destructor Declaration〉
〈BombSquadV Redraw Declarations〉
〈BombSquadV Reset Declaration〉

private:
〈BombSquadV Private Draw Declaration〉

The BombSquadView class also overrides some of the View methods to catch
the end-game.
〈BombSquadV Class Definition〉+≡

public:
〈BombSquadV Winning Declaration〉
〈BombSquadV Losing Declaration〉

We include the variables that are used in the bomb squad view class.
〈BombSquadV Class Definition〉+≡

private:
〈BombSquad Tiles〉
〈BombSquad Font〉
〈BombSquadV Game Over〉

Once these declarations are all done, we throw all of these together into
the class declaration itself. The BombSquadView inherits directly from the View
class of §6.
〈BombSquadV Class Declaration〉≡

class BombSquadView : public View {
〈BombSquadV Class Definition〉

};

November 15, 2001 nws/bview.nw 143

15.8 The bombView.h file

In this section, we assemble the header file for the BombSquadView class. It is
really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈bombView.h〉≡

namespace 〈NameSpace〉 {
〈BombSquadV Class Declaration〉

};

15.9 The bombView.cpp file

In this section, we assemble the BombSquad view source file. It requires the SDL
headers for dealing with surfaces, the screen, blitting, and loading images. It
requires the header files for the Cube class, the Font class, the SoundDev class,
the View class, the BombSquadView class itself, and the BombSquad game model.
〈bombView.cpp〉≡

#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "view.h"
#include "bombView.h"
#include "bomb.h"

After the header files, we include the implementations of the constructor,
the destructor, and the redraw methods.
〈bombView.cpp〉+≡

〈BombSquadV Constructor Implementation〉
〈BombSquadV Destructor Implementation〉
〈BombSquadV Redraw Implementations〉
〈BombSquadV Private Draw Implementation〉

The source file then includes the implementations of the end-game methods
that it overrides from the base class.
〈bombView.cpp〉+≡

〈BombSquadV Winning Implementation〉
〈BombSquadV Losing Implementation〉

November 15, 2001 144

Part V

The Maze Runner Game

16 Maze Runner

The namespace inside the maze runner class is a concatenation of the general
namespace and the name of the maze runner class.
〈MazeNameSpace〉≡
〈NameSpace〉::Maze
The Maze class keeps a pointer to the cube used for the game.

〈Maze Cube〉≡
Cube* cube;

The Maze class uses many constants to keep flags in the cube. First, the
Maze class has two flags which it only uses during preparation of the maze. The
preparation of the maze is described full in §16.2. For now, it suffices to say
that it uses the bottom eight bits to tell which set a particular cell belongs to
and the ninth bit to tell whether the bottom eight bits name the set or point
toward the set.
〈Maze Cube Flags〉≡

enum {
SET_MASK = 0x000000FF,
SET_REFERENCE = 0x00000100

};

The Maze class also has flags to tell whether a cell has been visited by the
player before, where the player currently is, and where the goal position is.
〈Maze Cube Flags〉+≡

enum {
BEEN_HERE = 0x00000200,
AM_HERE = 0x00000400,
FINISH_HERE = 0x00000800

};

November 15, 2001 145

Additionally, the Maze class uses some internal flags to tell which walls are
present on a cell. These flags are specificly set up in pairs so that if you have
the wall in the negative direction on a particular axis you can shift it up by a
bit to get the wall for the positive direction on that same axis. The pairs are
ordered from least-significant axis to most-significant axis.
〈Maze Cube Flags〉+≡

enum {
LEFT = 0x00010000,
RIGHT = 0x00020000,
UP = 0x00040000,
DOWN = 0x00080000,
FORE = 0x00100000,
AFT = 0x00200000,
ANA = 0x00400000,
KATA = 0x00800000,
ALL_WALLS = 0x00FF0000

};

The Maze class also tracks the number of dimensions that are being used.
It needs this information so that it can properly determine the neighbors of a
given point.
〈Maze Dimensions〉≡

unsigned int dims;

And, the Maze class tracks the current skill level.
〈Maze Skill Level〉≡

unsigned int skillLevel;

The Maze class also keeps track of whether or not it is wrapping around.
This is necessary so that it can properly determine neighbors of things near the
edge.
〈Maze Wrap〉≡

bool wrap;

The Maze class also keeps track of the index of the current location and the
index of the target location.
〈Maze Spots〉≡

unsigned int curIndex;
unsigned int finishIndex;

The Maze class also keeps track of the number of steps taken and the number
of those which were on a spot that was already stepped upon.
〈Maze Move Counters〉≡

int stepsTaken;
int repeatsTaken;

November 15, 2001 146

Also, to track the winning condition, there is a flag that tells whether the
game has already been won or not. After a person wins, she can play around
on the board as much as she likes before hitting the “New” button.
〈Maze Has Won〉≡

bool hasWon;

The Maze class also keeps track of the view pointer.
〈Maze View〉≡

MazeView* view;

16.1 The Constructor

The constructor for the Maze class takes five arguments. The first is a pointer
to the game cube, the second specifies the number of dimensions to employ,
the third specifies the skill level to use, the fourth specifies whether the edges
wrap around, and the fifth is an option pointer to the view to update when cells
change.
〈Maze Constructor Declaration〉≡

Maze(
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true,
MazeView* _view = 0

);

November 15, 2001 147

The constructor for the Maze class copies the arguments into its local vari-
ables. Then, it calls its own reset method to start a new game. But, first, it
verifies that all of the input arguments match its range expectations.
〈Maze Constructor Implementation〉≡

〈MazeNameSpace〉::Maze(
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap,
MazeView* _view

) : cube(_cube),
dims(_dims),
skillLevel(_skillLevel),
wrap(_wrap),
view(_view)

{
assert(cube != 0);
assert(dims >= 1);
assert(dims <= 4);
assert(skillLevel < 3);
this->reset();

}

16.2 The Reset Method

This method is used to start a new game. It requires no parameters. It assumes
that the number of dimensions, the skill level, and the wrap mode have already
been set.
〈Maze Reset Declaration〉≡

void reset(void);

November 15, 2001 148

The cube is set up to contain all walls. The starting set of each member
of the cube is itself. This is because the set of a cell is that cell’s index if the
SET_REFERENCE bit is not set. If the SET_REFERENCE bit is set, then the set of
the cell is the set of the cell whose index is this cell masked with SET_MASK. This
is described completely in §16.4. Then, this method prepares a list of walls to
nuke. Then, we keep trying to nuke walls until there are no more. After that,
we reset the game statistics and redraw.
〈Maze Reset Implementation〉≡

void
〈MazeNameSpace〉::reset(void)
{

*this->cube = ALL_WALLS;

〈Maze Extra Wall Table〉
unsigned int extraWallPercent

= table[this->dims][this->skillLevel];
unsigned int len

= 〈CubeNameSpace〉::arrayLengths[this->dims];

unsigned int distinctSets = len;
〈Maze Prepare List of Walls〉

while (wallCount > 0) {
unsigned int nn = random() % wallCount;
〈Maze Try To Nuke A Wall〉
walls[nn] = walls[wallCount-1];
--wallCount;

}

〈Maze Reset Current Statistics〉

if (this->view != 0) {
this->view->reset();
this->view->redraw();

}
}

November 15, 2001 149

The following table is used to determine the percentage of extra walls to
break down based upon the number of dimensions and the skill level.
〈Maze Extra Wall Table〉≡

unsigned int table[Cube::DIMENSIONS+1][3] = {
{ 0, 0, 0 },
{ 20, 10, 0 },
{ 20, 10, 0 },
{ 20, 10, 0 },
{ 20, 10, 0 },

};

To establish the list of walls, we will make an array big enough to hold every
possible wall.
〈Maze Prepare List of Walls〉≡

struct WallInfo {
unsigned int from;
unsigned int to;

};
struct WallInfo* walls = new struct WallInfo[

len * this->dims
];

Then, we’ll go through each cell and add in the walls that we haven’t already
added.
〈Maze Prepare List of Walls〉+≡

unsigned int wallCount = 0;

for (unsigned int ii=0; ii < len; ++ii) {
unsigned int nn[2 * 〈CubeNameSpace〉::DIMENSIONS];
unsigned int nc = this->cube->getNeighbors(

nn, ii, this->dims, this->wrap
);

for (unsigned int jj=0; jj < nc; ++jj) {
〈Maze Add Wall To List〉

}
}

When adding a potential wall to a list, we only add it if the neighbor has a
smaller index than the current cell. In this way, we ensure that we never add
the same wall twice.
〈Maze Add Wall To List〉≡

if (nn[jj] < ii) {
assert(wallCount < len * this->dims);
walls[wallCount].from = ii;
walls[wallCount].to = nn[jj];
++wallCount;

}

November 15, 2001 150

To determine whether we want to nuke a wall, we first see if the cells on
opposite sides of the wall are already in the same set. If they are, then we
should not nuke the wall unless we’re just into randomly nuking it. To nuke the
wall, we mark the walls as gone in the cube and then join the sets of the two
walls.
〈Maze Try To Nuke A Wall〉≡

unsigned int setFrom = this->set(walls[nn].from);
unsigned int setTo = this->set(walls[nn].to);

if (setFrom != setTo || (random() % 100) < extraWallPercent) {
〈Maze Destroy Wall〉
this->join(setFrom, setTo);

}

To actually destroy the wall, we first retrieve the coordinates of the original
and final cell. Then, we determine which axis the wall is along. Then, we
actually erase the walls from the cube.
〈Maze Destroy Wall〉≡

〈Maze Get To And From Coordinates〉
〈Maze Determine Which Axis〉
〈Maze Clear Walls〉

We get the coordinates by invoking the indexToVector() method of the
Cube class.
〈Maze Get To And From Coordinates〉≡

unsigned int vf[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(walls[nn].from, vf);

unsigned int vt[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(walls[nn].to, vt);

Then, we use the helper method defined in §2.3 to tell which axis and which
direction along that axis this wall happens to be.
〈Maze Determine Which Axis〉≡

bool positive;
unsigned int axis;

〈CubeNameSpace〉::determineAxis(
vf, vt, this->wrap, &axis, &positive

);

November 15, 2001 151

To actually clear the walls, we take the lowest possible wall. We shift it over
by twice the axis number. Then, for positive differences, we shift the from wall
one more time. For negative differences, we shift the to wall one more time.
These walls are erased from the cube.
〈Maze Clear Walls〉≡

unsigned int fw = LEFT << (2 * axis);
unsigned int tw = LEFT << (2 * axis);

if (positive) {
fw <<= 1;

} else {
tw <<= 1;

}

(*this->cube)[walls[nn].from] &= ~fw;
(*this->cube)[walls[nn].to] &= ~tw;

For example, if the axis were 1 and the difference were positive, then fw and
tw would both be set to UP and then fw would be shifted to DOWN. This means
that the lower wall of the from location and the upper wall of the to location
would be erased. This is what one would expect because the cube is presented
on-screen with right and down being the positive directions.

To reset the statistics for the game, we first clear out the number of steps
taken, the number of steps taken on cells that have already been stepped upon,
the winning status, and the current position.
〈Maze Reset Current Statistics〉≡

this->stepsTaken = 0;
this->repeatsTaken = 0;
this->hasWon = false;
this->curIndex = 0;
(*this->cube)[this->curIndex] |= AM_HERE;

November 15, 2001 152

Then, based upon the wrap mode and the current number of dimensions, we
decide where the end-point of the maze should be.
〈Maze Reset Current Statistics〉+≡

unsigned int vec[〈CubeNameSpace〉::DIMENSIONS];
for (unsigned int ii=0; ii < 〈CubeNameSpace〉::DIMENSIONS; ++ii) {

vec[ii] = 0;
}

if (this->wrap) {
for (unsigned int ii=0; ii < this->dims; ++ii) {

vec[ii] = 〈CubeNameSpace〉::SIDE_LENGTH / 2;
}

} else {
for (unsigned int ii=0; ii < this->dims; ++ii) {

vec[ii] = 〈CubeNameSpace〉::SIDE_LENGTH - 1;
}

}

〈CubeNameSpace〉::vectorToIndex(vec, &this->finishIndex);
(*this->cube)[this->finishIndex] |= FINISH_HERE;

16.3 The Move Method

This method determines whether the person can go in a direct line from the
current position to the position given by the toIndex parameter.
〈Maze Move Declaration〉≡

void move(unsigned int toIndex);

This method saves the current position. Then, it retrieves the coordinates
of the current position and the proposed destination. It uses those coordinates
to determine which axis is the proposed axis of motion. Then, if there are no
obstructions, it makes the actual move.
〈Maze Move Implementation〉≡

void
〈MazeNameSpace〉::move(unsigned int toIndex)
{

unsigned int fromIndex = this->curIndex;
〈Maze Move Get Coordinates〉
〈Maze Move Determine Axis〉
〈Maze Check For Walls Along Path〉
〈Maze Update Counters And Mark Path〉

}

November 15, 2001 153

To get the coordinates of the starting and ending locations, we call the
indexToVector method on the Cube class.
〈Maze Move Get Coordinates〉≡

unsigned int vf[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(fromIndex, vf);

unsigned int vt[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(toIndex, vt);

To check the axis of motion, we determine the difference between the current
position and the destination position. If the move is not parallel to an axis, we
bail.
〈Maze Move Determine Axis〉≡

bool positive;
unsigned int axis;

if (〈CubeNameSpace〉::determineAxis(
vf, vt, this->wrap, &axis, &positive

) == false) {
return;

}

To check for walls along the path, first we’re going to copy the starting
coordinates into the current coordinates.
〈Maze Check For Walls Along Path〉≡

unsigned int vc[〈CubeNameSpace〉::DIMENSIONS];

for (unsigned int ii=0; ii < 〈CubeNameSpace〉::DIMENSIONS; ++ii) {
vc[ii] = vf[ii];

}

November 15, 2001 154

Then, we’re going to step along the axis in the positive direction looking for
walls that are in the way.
〈Maze Check For Walls Along Path〉+≡

bool hit = false;

unsigned int wall = RIGHT << (2 * axis);
unsigned int positiveDist = 0;

while (!hit && vc[axis] != vt[axis]) {
hit = ((*this->cube)[vc] & wall) != 0;
〈Maze Do Positive Step〉
++positiveDist;

}

if (hit) {
positiveDist = 0;

}

vc[axis] = vf[axis];

We’re also going to look in the negative direction. If we didn’t hit a wall in
either, then we’ll move the closer direction.
〈Maze Check For Walls Along Path〉+≡

unsigned int negativeDist = 0;

wall = LEFT << (2 * axis);

hit = false;

while (!hit && vc[axis] != vt[axis]) {
hit = ((*this->cube)[vc] & wall) != 0;
〈Maze Do Negative Step〉
++negativeDist;

}

if (hit) {
negativeDist = 0;

}

vc[axis] = vf[axis];

To move in the positive direction, we simply add one to the current spot on
the axis and take the result modulo the size of the cube.
〈Maze Do Positive Step〉≡

vc[axis] = (vc[axis] + 1) % 〈CubeNameSpace〉::SIDE_LENGTH;

November 15, 2001 155

To move in the negative direction, we simply subtract one from the current
spot on the axis and take the result modulo the size of the cube. We have to
be careful though not to end up dealing in negative numbers before the modulo
though.
〈Maze Do Negative Step〉≡

vc[axis] = (
vc[axis] + 〈CubeNameSpace〉::SIDE_LENGTH - 1

) % 〈CubeNameSpace〉::SIDE_LENGTH;
If we hit walls in both directions, then this is not a legal move. If it’s not a

legal move, we’ll bail. Otherwise, we’ll move whichever way is closer.
〈Maze Check For Walls Along Path〉+≡

if (positiveDist == 0 && negativeDist == 0) {
return;

}

if (positiveDist == 0) {
positive = false;

} else if (negativeDist == 0) {
positive = true;

} else {
positive = (positiveDist <= negativeDist);

}

November 15, 2001 156

If we make it this far, then the move was legal. So, we’re going to step
through the path, updating our counters and the cells.
〈Maze Update Counters And Mark Path〉≡

(*this->cube)[this->curIndex] &= ~AM_HERE;
this->curIndex = toIndex;
(*this->cube)[this->curIndex] |= AM_HERE;

while (vc[axis] != vt[axis]) {
unsigned int index;
〈CubeNameSpace〉::vectorToIndex(vc, &index);

〈Maze Update Increment Counters〉
(*this->cube)[index] |= BEEN_HERE;

if (this->view != 0) {
this->view->redraw(index);

}

if (positive) {
〈Maze Do Positive Step〉

} else {
〈Maze Do Negative Step〉

}
}

if (this->view != 0) {
this->view->redraw(this->curIndex);
this->view->moveNoise();

}

〈Maze Check Winning〉
To update the counters, we have to note that we’ve taken a step. And, if

this is a cell we’ve been to before, we have to note that the step was a repeat.
〈Maze Update Increment Counters〉≡

++this->stepsTaken;
if (((*this->cube)[index] & BEEN_HERE) != 0) {

++this->repeatsTaken;
}

November 15, 2001 157

To check the winning condition, we have to see if we’ve made it to the
finish-point. If we have, then we display the winning message.
〈Maze Check Winning〉≡

if (!hasWon) {
hasWon = (this->curIndex == this->finishIndex);

if (hasWon && this->view != 0) {
this->view->showWinning(

this->repeatsTaken,
this->stepsTaken - this->repeatsTaken

);
}

}

16.4 The Disjoint Set ADT Methods

The maze creation step uses the abstract data type (ADT) for disjoint sets.
The basic idea of that ADT is that we have an array which contains integers. If
the SET_REFERENCE bit is not set for a particular item, then the index of that
item is the name of its set. If the SET_REFERENCE bit is set, then the set of this
particular item is the same as the set of the item number obtained by masking
this item with SET_MASK. The code will make it more clear.

There are two set operations defined. The set() operation returns the set
name for a given index. The join() operation joins two sets.
〈Maze Set ADT Declarations〉≡

unsigned int set(unsigned int index);
void join(unsigned int aa, unsigned int bb);

November 15, 2001 158

This method determines the name of the set for a given index in the cube.
If the SET_REFERENCE bit is not set, then the name of the set is the same as the
index of the cell. If the SET_REFERENCE bit is set, then the set is the same as
that of the referenced cell. In an effort to keep the depth of the tree small, we
always update this cell’s set every time we check it.
〈Maze Set ADT Implementations〉≡

unsigned int
〈MazeNameSpace〉::set(unsigned int index)
{

unsigned int value = (*this->cube)[index];

if ((value & SET_REFERENCE) != 0) {
unsigned int ss = this->set(value & SET_MASK);
〈Maze Set Assign Set Number〉
return ss;

} else {
return index;

}
}

To assign a set number to a cell, we have to clear out all of the bits covered
by the SET_MASK and then put the set name back in those lower bits.
〈Maze Set Assign Set Number〉≡

assert(ss <= SET_MASK);
value &= ~SET_MASK;
value |= ss;
(*this->cube)[index] = value;

To join two sets, we simply find the top node in the set of the second guy
and make it reference the top node in the set of the first guy.
〈Maze Set ADT Implementations〉+≡

void
〈MazeNameSpace〉::join(unsigned int aa, unsigned int bb)
{

unsigned int ss = this->set(aa);
unsigned int index = this->set(bb);

if (ss != index) {
unsigned int value = (*this->cube)[index];
value |= SET_REFERENCE;
〈Maze Set Assign Set Number〉

}
}

November 15, 2001 159

16.5 The Maze class

In this section, we assemble the Maze class from the pieces in the sections above.
The first thing in the maze class definition is the set of flags used to track

the state of cells in the cube.
〈Maze Class Definition〉≡

public:
〈Maze Cube Flags〉

After that is the declaration of the constructor.
〈Maze Class Definition〉+≡

public:
〈Maze Constructor Declaration〉

After that, the reset method and the move method are declared.
〈Maze Class Definition〉+≡

public:
〈Maze Reset Declaration〉
〈Maze Move Declaration〉

After that, the set abstract data type interfaces are declared.
〈Maze Class Definition〉+≡

private:
〈Maze Set ADT Declarations〉

The data members of the Maze class all have private scope. The data mem-
bers specify the cube, the number of dimensions, the skill level, the wrapping
mode, the indexes of the special spots, the move counters, the variables for
tracking the winning state, and the pointer to the view class if one was given.
〈Maze Class Definition〉+≡

private:
〈Maze Cube〉
〈Maze Dimensions〉
〈Maze Skill Level〉
〈Maze Wrap〉
〈Maze Spots〉
〈Maze Move Counters〉
〈Maze Has Won〉
〈Maze View〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Maze Class Declaration〉≡

class Maze {
〈Maze Class Definition〉

};

November 15, 2001 160

16.6 The maze.h file

In this section, we assemble the header file for the Maze class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈maze.h〉≡

namespace 〈NameSpace〉 {
〈Maze Class Declaration〉

};

16.7 The maze.cpp file

For the actual C++ source code, we include the header file that defines assert(),
the header file for random(), the header file for the SDL stuff needed by the
view.h file, the header file for the cube, the header file for the sound device,
the header file for the generic view class, the header file for the view class for
this particular game, and the header file generated in the previous section.
〈maze.cpp〉≡

#include <assert.h>
#include <stdlib.h>
#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "mazeView.h"
#include "maze.h"

Then, the source file incorporates the implementation of the constructor.
〈maze.cpp〉+≡

〈Maze Constructor Implementation〉
After that, the source file incorporates the implementations of the reset

method and the move method.
〈maze.cpp〉+≡

〈Maze Reset Implementation〉
〈Maze Move Implementation〉

The source file also contains the implementation of the disjoint set abstract
data type.
〈maze.cpp〉+≡

〈Maze Set ADT Implementations〉

November 15, 2001 nws/mcontrol.nw 161

17 The Maze Game Controller

The namespace inside the Maze controller class is a concatenation of the general
namespace and the name of the Maze controller class.
〈MazeCNameSpace〉≡
〈NameSpace〉::MazeController
The Maze game controller inherits from the generic game controller of §5. It

actually controls the initialization and game action of the Maze game. It fields
the mouse clicks and converts them from screen coordinates into cell coordinates.
And, it fields events from the view sidebar that set the difficulty level and set
the wrap mode and set the dimensions and reset the game.

The Maze game controller contains an instance of the Maze game view.
〈MazeC View〉≡

MazeView view;

The Maze game controller also contains a pointer to the current instance of
the game model.
〈MazeC Model〉≡

Maze* model;

17.1 The Constructor and Destructor

The constructor for the Maze controller class takes six arguments. The first is
a pointer to the screen, the second is a pointer to the sound device, the third
is a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth specifies the skill level to use, and the last specifies whether
the edges wrap around.
〈MazeC Constructor Declaration〉≡

MazeController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/mcontrol.nw 162

The constructor for the Maze controller class simply passes most of its argu-
ments to the Controller constructor. Then, it calls its own reset() method
to allocate a new instance of the Maze class.
〈MazeC Constructor Implementation〉≡

〈MazeCNameSpace〉::MazeController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : Controller(_cube, _dims, _skillLevel, _wrap),
view(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
model(0)

{
this->view.backgroundMusic();
this->reset();

}

The destructor for the Maze controller class deletes the stored model for the
Maze game.
〈MazeC Destructor Declaration〉≡

virtual ~MazeController(void);

〈MazeC Destructor Implementation〉≡
〈MazeCNameSpace〉::~MazeController(void)
{

this->view.backgroundMusic(true);
delete this->model;

}

17.2 The Reset Method

The MazeController class has a method called reset(). It uses this method
to create a new instance of the Maze game model.
〈MazeC Reset Declaration〉≡

void reset(void);

November 15, 2001 nws/mcontrol.nw 163

The method first deletes the old model and then creates a new model.
〈MazeC Reset Implementation〉≡

void
〈MazeCNameSpace〉::reset(void)
{

delete this->model;
this->model = new Maze(

this->cube,
this->dims,
this->skillLevel,
this->wrap,
&this->view

);
}

17.3 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it gets to know which mouse button was pressed.
〈MazeC Mouse Click Declaration〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/mcontrol.nw 164

If the sidebar did not eat up this event, then this method checks to see if the
event hit a cell of the cube. If it did and the event was a mouse-release, then
this method calls the move() method on the model.
〈MazeC Mouse Click Implementation〉≡

void
〈MazeCNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

unsigned int index;
bool hit;

hit = this->view.handleMouseClick(
this, isMouseUp, xx, yy, buttonNumber

);

if (!hit) {
hit = 〈ViewNameSpace〉::screenToCell(

xx, yy, this->dims, &index
);

if (hit && ! isMouseUp) {
this->model->move(index);

}
}

}

17.4 The Game Setting Interface

The following method is invoked by the View class when someone clicks one of
the “dimensions” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈MazeC Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims);

November 15, 2001 nws/mcontrol.nw 165

〈MazeC Game Setting Implementation〉≡
void
〈MazeCNameSpace〉::setDimension(

unsigned int _dims
)

{
if (_dims != this->dims) {

this->dims = _dims;
this->reset();

}
}

The following method is invoked by the View class when someone clicks one
of the “skill level” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈MazeC Game Setting Interface〉+≡

virtual void setSkillLevel(unsigned int _skillLevel);

〈MazeC Game Setting Implementation〉+≡
void
〈MazeCNameSpace〉::setSkillLevel(

unsigned int _skillLevel
)

{
if (_skillLevel != this->skillLevel) {

this->skillLevel = _skillLevel;
this->reset();

}
}

The following method is invoked by the View class when someone clicks on
the “wrap” button on the sidebar. If the button wasn’t already selected, then
this triggers a reset().
〈MazeC Game Setting Interface〉+≡

virtual void setWrap(bool _wrap);

〈MazeC Game Setting Implementation〉+≡
void
〈MazeCNameSpace〉::setWrap(

bool _wrap
)

{
if (_wrap != this->wrap) {

this->wrap = _wrap;
this->reset();

}
}

November 15, 2001 nws/mcontrol.nw 166

The following method is invoked by the View class when someone clicks on
the “new” button on the sidebar. This always triggers a reset().
〈MazeC Game Setting Interface〉+≡

virtual void newGame(void);

〈MazeC Game Setting Implementation〉+≡
void
〈MazeCNameSpace〉::newGame(void)
{

this->reset();
}

17.5 The MazeController class

In this section, we assemble the MazeController class from the pieces in the
sections above.

We include, in the MazeController class, the constructor and the destructor.
〈MazeC Class Definition〉≡

public:
〈MazeC Constructor Declaration〉
〈MazeC Destructor Declaration〉

The MazeController class also declares its reset method and the methods
used by the View class to change the game state.
〈MazeC Class Definition〉+≡

private:
〈MazeC Reset Declaration〉

public:
〈MazeC Game Setting Interface〉

We include, in the MazeController class, the method used for mouse clicks.
〈MazeC Class Definition〉+≡

public:
〈MazeC Mouse Click Declaration〉

The MazeController class also contains the member variables which were
defined at the beginning of this section of the document.
〈MazeC Class Definition〉+≡

private:
〈MazeC View〉
〈MazeC Model〉

November 15, 2001 nws/mcontrol.nw 167

Once these declarations are all done, we throw all of these together into
the class declaration itself. The MazeController inherits directly from the
Controller class of §5.
〈MazeC Class Declaration〉≡

class MazeController : public Controller {
〈MazeC Class Definition〉

};

17.6 The mazeController.h file

In this section, we assemble the header file for the MazeController class. It is
really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈mazeController.h〉≡

namespace 〈NameSpace〉 {
〈MazeC Class Declaration〉

};

17.7 The mazeController.cpp file

In this section, we assemble the Maze controller source file. It requires the
header files for the Cube class, the SoundDev class, the Controller class, the
View class, the MazeView class, the Maze class, and the MazeController classes.
〈mazeController.cpp〉≡

#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "controller.h"
#include "view.h"
#include "mazeView.h"
#include "maze.h"
#include "mazeController.h"

After the header files, we include the implementations of the constructor and
destructor.
〈mazeController.cpp〉+≡

〈MazeC Constructor Implementation〉
〈MazeC Destructor Implementation〉

After the constructor and destructor, the implementation of the reset()
method and the game state methods are also included.
〈mazeController.cpp〉+≡

〈MazeC Reset Implementation〉
〈MazeC Game Setting Implementation〉

November 15, 2001 nws/mcontrol.nw 168

Then, we include the implementation of the method used to field mouse
clicks.
〈mazeController.cpp〉+≡

〈MazeC Mouse Click Implementation〉

November 15, 2001 nws/mview.nw 169

18 The Maze Game View

The namespace inside the Maze view class is a concatenation of the general
namespace and the name of the Maze view class.
〈MazeVNameSpace〉≡
〈NameSpace〉::MazeView
The Maze game view inherits from the generic game view of §6. It displays

the current state of the Maze game.
The Maze game stores pointers to the images of the tile pieces to use. The

base image depends on whether the person has been to this spot before or not.
The goal position and current position each have their own images which are
overlayed on the base image before the walls are displayed. There are twice as
many walls as there are dimensions—a wall in the positive and negative direction
for each axis. The wall images are overlayed on the backdrop.
〈Maze Tiles〉≡

SDL_Surface* base[2];
SDL_Surface* finishHere;
SDL_Surface* amHere;
SDL_Surface* walls[2 * 〈CubeNameSpace〉::DIMENSIONS];

18.1 The Constructor

The constructor for the Maze view class takes six arguments. The first is a
pointer to the screen, the second is a pointer to the sound device, the third is
a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth is the skill level, and the sixth is the wrapping mode.
〈MazeV Constructor Declaration〉≡

MazeView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/mview.nw 170

The constructor for the Maze view class passes all of its arguments to the
View constructor. Then, it loads the images it uses.
〈MazeV Constructor Implementation〉≡

〈MazeVNameSpace〉::MazeView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : View(_screen, _sound, _cube, _dims, _skillLevel, _wrap)
{

this->base[0] = ::IMG_Load("../../data/unmarked.png");
this->base[1] = ::IMG_Load("../../data/marked.png");

this->finishHere = ::IMG_Load("../../data/goal.png");
this->amHere = ::IMG_Load("../../data/me.png");

〈MazeV Load Wall Images〉
}

The images for the different walls are simply numbered. There are two walls
per dimension—one in the positive direction and one in the negative direction.
〈MazeV Load Wall Images〉≡

for (unsigned int ii=0; ii < 2 * 〈CubeNameSpace〉::DIMENSIONS; ++ii) {
char buf[64];
sprintf(buf, "../../data/wall%1x.png", ii);
this->walls[ii] = ::IMG_Load(buf);

}

Note: The proper way to iterate through these filenames with C++ is to
use strstream stuff. But, in order to keep the executable very small, I’m not
using the standard-template library at all. You could replace the above code
with the following code if you were really concerned about staying away from
sprintf(3).
〈MazeV Proper Load Wall Images〉≡

for (unsigned int ii=0; ii < 2 * 〈CubeNameSpace〉::DIMENSIONS; ++ii) {
std::ostrstream buf;
buf << "../../data/wall" << hex << ii << std::ends;
this->walls[ii] = ::IMG_Load(buf.str());

}

November 15, 2001 nws/mview.nw 171

18.2 The Destructor

The destructor for the maze view class simply release the images that it loaded
above in the constructor.
〈MazeV Destructor Declaration〉≡

~MazeView(void);

〈MazeV Destructor Implementation〉≡
〈MazeVNameSpace〉::~MazeView(void)
{

〈MazeV Release Wall Images〉

::SDL_FreeSurface(this->amHere);
::SDL_FreeSurface(this->finishHere);

::SDL_FreeSurface(this->base[1]);
::SDL_FreeSurface(this->base[0]);

}

We release the walls in the opposite order they were allocated in an effort
to be nice to the memory allocation system.
〈MazeV Release Wall Images〉≡

for (unsigned int ii=2*〈CubeNameSpace〉::DIMENSIONS; ii > 0 ; --ii) {
::SDL_FreeSurface(this->walls[ii-1]);

}

18.3 The Redraw Methods

The Maze view class has a method which allows one to update the entire display
area for the game.
〈MazeV Redraw Declarations〉≡

virtual void redraw(void);

November 15, 2001 nws/mview.nw 172

The redraw function here calls the redraw function on the base class to
update the sidebar and the background area of the cube. Then, it runs through
each cell in the cube, drawing it. After that, it updates the whole screen.
〈MazeV Redraw Implementations〉≡

void
〈MazeVNameSpace〉::redraw(void)
{

this->View::redraw();

unsigned int maxIndex
= 〈CubeNameSpace〉::arrayLengths[this->dims];

for (unsigned int index=0; index < maxIndex; ++index) {
this->drawCell(index, false);

}

::SDL_UpdateRect(this->screen, 0, 0, 0, 0);
}

The Maze view class has a method which allows one to update a single cell
of the cube by index.
〈MazeV Redraw Declarations〉+≡

virtual void redraw(unsigned int index);

This method simply uses the method defined next to draw the single cell in
question.
〈MazeV Redraw Implementations〉+≡

void
〈MazeVNameSpace〉::redraw(unsigned int index)
{

this->drawCell(index);
}

The Maze view class has a method to draw a single cell of the cube. It uses
this method in each of the above methods.
〈MazeV Private Draw Declaration〉≡

void drawCell(unsigned int index, bool update = true);

November 15, 2001 nws/mview.nw 173

To draw a single cell, this method retrieves the screen coordinates of the cell
from the conversion method in the base class. Then, it prepares a rectangle to
fill for the cell. Then, it uses the state of the cell in the game cube to determine
how to draw this cell. It draws this cell differently depending on whether it was
visited before or not. Then, if this is the goal location, it draws the goal marker.
Then, on top of that, it draws the walls between directions. And, if this is the
location with the person in it, it draws the person.
〈MazeV Private Draw Implementation〉≡

void
〈MazeVNameSpace〉::drawCell(

unsigned int index, bool update
)

{
unsigned int xx;
unsigned int yy;

View::cellToScreen(index, this->dims, &xx, &yy);

〈MazeV Prepare Single Cell Rect〉

unsigned int value = (*this->cube)[index];

if ((value & 〈MazeNameSpace〉::BEEN_HERE) != 0) {
::SDL_BlitSurface(this->base[1], 0, this->screen, &rect);

} else {
::SDL_BlitSurface(this->base[0], 0, this->screen, &rect);

}

if ((value & 〈MazeNameSpace〉::FINISH_HERE) != 0) {
::SDL_BlitSurface(this->finishHere, 0, this->screen, &rect);

}

〈MazeV Draw Walls〉

if ((value & 〈MazeNameSpace〉::AM_HERE) != 0) {
::SDL_BlitSurface(this->amHere, 0, this->screen, &rect);

}

if (update) {
::SDL_UpdateRect(this->screen, xx, yy, SQUARE, SQUARE);

}
}

November 15, 2001 nws/mview.nw 174

The rectangle that will be filled to represent the cell simply starts at the
starting coordinates of the rectangle and goes the full size of the cell.
〈MazeV Prepare Single Cell Rect〉≡

SDL_Rect rect;
rect.x = xx;
rect.y = yy;
rect.w = SQUARE;
rect.h = SQUARE;

To draw the walls, we loop through every possible wall. We check the wall
in the cell to see if it is set. If it is, we draw it.
〈MazeV Draw Walls〉≡

for (unsigned int ii=0; ii < 2 * 〈CubeNameSpace〉::DIMENSIONS; ++ii) {
unsigned int wall = 〈MazeNameSpace〉::LEFT << ii;
if ((value & wall) != 0) {

::SDL_BlitSurface(this->walls[ii], 0, this->screen, &rect);
}

}

18.4 The MazeView class

In this section, we assemble the MazeView class from the pieces in the sections
above.

We include, in the MazeView class, the constructor, the destructor and the
redraw methods.
〈MazeV Class Definition〉≡

public:
〈MazeV Constructor Declaration〉
〈MazeV Destructor Declaration〉
〈MazeV Redraw Declarations〉

private:
〈MazeV Private Draw Declaration〉

We include the variables that are used in the maze view class.
〈MazeV Class Definition〉+≡

private:
〈Maze Tiles〉

Once these declarations are all done, we throw all of these together into the
class declaration itself. The MazeView inherits directly from the View class of
§6.
〈MazeV Class Declaration〉≡

class MazeView : public View {
〈MazeV Class Definition〉

};

November 15, 2001 nws/mview.nw 175

18.5 The mazeView.h file

In this section, we assemble the header file for the MazeView class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈mazeView.h〉≡

namespace 〈NameSpace〉 {
〈MazeV Class Declaration〉

};

18.6 The mazeView.cpp file

In this section, we assemble the Maze view source file. It requires the SDL
headers for dealing with surfaces, the screen, blitting, and loading images. It
requires the header files for the Cube class, the SoundDev class, the View class,
and the MazeView class itself.
〈mazeView.cpp〉≡

#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "mazeView.h"

The MazeView implementation also needs the definition of the Maze class in
order to get the flags used in the cells of the cube.
〈mazeView.cpp〉+≡

#include "maze.h"

After the header files, we include the implementations of the constructor,
the destructor, and the redraw methods.
〈mazeView.cpp〉+≡

〈MazeV Constructor Implementation〉
〈MazeV Destructor Implementation〉
〈MazeV Redraw Implementations〉
〈MazeV Private Draw Implementation〉

November 15, 2001 176

Part VI

The Peg Jumper Game

19 Peg Jumper

The namespace inside the peg jumper class is a concatenation of the general
namespace and the name of the peg jumper class.
〈PegNameSpace〉≡
〈NameSpace〉::Peg
The Peg class defines some constants it uses to keep track of the board state.

〈Peg Constants〉≡
enum {

EMPTY = 0,
HOLE = 1,
PEG = 2,
SELECTED = 4

};

The Peg class keeps a pointer to the cube used for the game.
〈Peg Cube〉≡

Cube* cube;

The Peg class also tracks the number of dimensions that are being used. It
needs this information so that it can properly determine the neighbors of a given
point.
〈Peg Dimensions〉≡

unsigned int dims;

And, the Peg class tracks the current skill level.
〈Peg Skill Level〉≡

unsigned int skillLevel;

The Peg class also keeps track of whether or not it is wrapping around. This
is necessary so that it can properly determine neighbors of things near the edge.
〈Peg Wrap〉≡

bool wrap;

The Peg class also keeps track of the index of the current location of the se-
lected spot. If no spot is selected, then this will be set higher than the maximum
index for this number of dimensions.
〈Peg Selected Spot〉≡

unsigned int selectedSpot;

The Peg class also keeps track of the number of pegs remaining.
〈Peg Move Counter〉≡

unsigned int pegsRemaining;
unsigned int stepsTaken;
bool firstMove;

November 15, 2001 177

Also, to track the winning condition, there is a flag that tells whether the
game has already been won or not. After a person wins, she has to hit the
“New” button before getting another game.
〈Peg Has Won〉≡

bool hasWon;

The Peg class also keeps track of the view pointer.
〈Peg View〉≡

PegView* view;

19.1 The Constructor

The constructor for the Peg class takes five arguments. The first is a pointer
to the game cube, the second specifies the number of dimensions to employ,
the third specifies the skill level to use, the fourth specifies whether the edges
wrap around, and the fifth is an option pointer to the view to update when cells
change.
〈Peg Constructor Declaration〉≡

Peg(
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true,
PegView* _view = 0

);

November 15, 2001 178

The constructor for the Peg class copies the arguments into its local variables.
Then, it calls its own reset method to start a new game. But, first, it verifies
that all of the input arguments match its range expectations.
〈Peg Constructor Implementation〉≡

〈PegNameSpace〉::Peg(
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap,
PegView* _view

) : cube(_cube),
dims(_dims),
skillLevel(_skillLevel),
wrap(_wrap),
view(_view)

{
assert(cube != 0);
assert(dims >= 2);
assert(dims <= 4);
assert(skillLevel < 3);
this->reset();

}

19.2 The Reset Method

This method is used to start a new game. It requires no parameters. It assumes
that the number of dimensions, the skill level, and the wrap mode have already
been set.
〈Peg Reset Declaration〉≡

void reset(void);

The cube is set up from a pattern given in a data file. Which data file
depends upon the skill level and the number of dimensions. Then, the statistics
for the game are reset and the view is refreshed.
〈Peg Reset Implementation〉≡

void
〈PegNameSpace〉::reset(void)
{

〈Peg Load Board〉
〈Peg Reset Current Statistics〉

if (this->view != 0) {
this->view->reset();
this->view->redraw();

}
}

November 15, 2001 179

The board to load is chosen based upon the current number of dimensions
and the current skill level.
〈Peg Load Board〉≡

char buf[512];
::sprintf(buf, "../../data/b%d-%d%c.peg",

this->dims, this->skillLevel,
(this->wrap) ? ’w’ : ’n’

);

The real way to do this in C++ involves an ostrstream, but that would
add quite a bit of size to my program. As this program is being written for
a contest with a size limit, I’m using the sprintf() call above instead of the
block below with uses the standard template library.
〈Peg Load Board with STL〉≡

std::ostrstream stream;

stream << "../../data/b"
<< this->dims << ’-’
<< this->skillLevel
<< ((this->wrap) ? ’w’ : ’n’)
<< std::ends;

November 15, 2001 180

And then the fopen() call below would take the argument stream.str()
instead of buf.

The board is read in a space at a time. The board is specified with dashes
indicating empty cells, o’s indicating holes, and x’s indicating pegs.
〈Peg Load Board〉+≡

this->pegsRemaining = 0;

FILE* fp = ::fopen(buf, "r");
if (fp != 0) {

for (unsigned int ii=0; /**/; /**/) {
char ch;
if (::fscanf(fp, "%c", &ch) == 1) {

if (ch == ’-’) {
(*this->cube)[ii] = EMPTY;
++ii;

} else if (ch == ’o’) {
(*this->cube)[ii] = HOLE;
++ii;

} else if (ch == ’x’) {
(*this->cube)[ii] = PEG;
++this->pegsRemaining;
++ii;

}
} else {

break;
}

}

::fclose(fp);
}

Then, we reset the game statistics. In this case, it’s simply that the game
has not yet been won.
〈Peg Reset Current Statistics〉≡

this->hasWon = false;
this->firstMove = true;

unsigned int len = 〈CubeNameSpace〉::arrayLengths[this->dims];
this->selectedSpot = len;

19.3 The Check Selected Method

This method checks to see if the selected spot is within the range of the board.
〈Peg Check Selected Declaration〉≡

bool isSelected(void) const;

November 15, 2001 181

〈Peg Check Selected Implementation〉≡
bool
〈PegNameSpace〉::isSelected(void) const
{

unsigned int len = 〈CubeNameSpace〉::arrayLengths[this->dims];
return (this->selectedSpot < len);

}

19.4 The Select Method

This method is used to select the peg with which to jump.
〈Peg Select Declaration〉≡

void select(unsigned int cell);

This method checks to see if the cell contains a peg. If it does, then whatever
cell had been selected is unselected and the new cell is selected.
〈Peg Select Implementation〉≡

void
〈PegNameSpace〉::select(unsigned int cell)
{

unsigned int len = 〈CubeNameSpace〉::arrayLengths[this->dims];

if (((*this->cube)[cell] & PEG) != 0) {

〈Peg Select Check First Move〉

if (this->selectedSpot < len) {
(*this->cube)[this->selectedSpot] &= ~SELECTED;
if (this->view != 0) {

this->view->redraw(this->selectedSpot);
}

}

(*this->cube)[cell] |= SELECTED;
if (this->view != 0) {

this->view->moveNoise();
this->view->redraw(cell);

}

this->selectedSpot = cell;
}

}

November 15, 2001 182

If this is the first move of the game, then we zot the first peg selected.
〈Peg Select Check First Move〉≡

if (this->firstMove == true) {
(*this->cube)[cell] = HOLE;
if (this->view != 0) {

this->view->moveNoise();
this->view->redraw(cell);

}
this->firstMove = false;
--this->pegsRemaining;
return;

}

19.5 The Jump Method

This method is used to jump over the peg specified by the parameter.
〈Peg Jump Declaration〉≡

void jump(unsigned int cell);

This method first checks to see if the cell contains a peg. If it does, then it
checks to make sure that the selected spot is a neighbor of this spot. If it is,
then it checks to make sure that the destination cell is empty and a legitimate
neighbor of the current cell. If it is, then the jump is executed.
〈Peg Jump Implementation〉≡

void
〈PegNameSpace〉::jump(unsigned int cell)
{

unsigned int len = 〈CubeNameSpace〉::arrayLengths[this->dims];
unsigned int srcSpot = this->selectedSpot;

〈Peg Jump Clear Selected Cell〉

〈Peg Jump Check For Null Jump〉
〈Peg Jump Check For Peg〉
〈Peg Jump Check Selected Is Neighbor〉
〈Peg Jump Check Destination Empty〉
〈Peg Jump Check Destination Is Neighbor〉
〈Peg Jump Do Jump〉
〈Peg Jump Check Winning〉

}

November 15, 2001 183

To clear the selected spot, we mask out all of the bits except the one marked
SELECTED. Then, we redraw the spot and then reset it so that the isSelected
method returns false.
〈Peg Jump Clear Selected Cell〉≡

(*this->cube)[this->selectedSpot] &= ~SELECTED;
if (this->view != 0) {

this->view->redraw(this->selectedSpot);
}
this->selectedSpot = len;

If the person tried to jump over the spot that was already selected, then we
have to just forget the selected spot.
〈Peg Jump Check For Null Jump〉≡

if (cell == srcSpot) {
return;

}

If the clicked cell does not contain a peg, then we’ll just bail out. We cannot
jump an empty cell.
〈Peg Jump Check For Peg〉≡

if (((*this->cube)[cell] & PEG) == 0) {
return;

}

Then, we run through the neighbors of the cell looking for the selected spot.
If it isn’t there, then we’ll bail. This is an illegal jump.
〈Peg Jump Check Selected Is Neighbor〉≡

unsigned int nn[2 * 〈CubeNameSpace〉::DIMENSIONS];
unsigned int nc = this->cube->getNeighbors(

nn, cell, this->dims, this->wrap
);

bool found = false;

for (unsigned int ii=0; !found && ii < nc; ++ii) {
found = (nn[ii] == srcSpot);

}

if (!found) {
return;

}

November 15, 2001 184

We retrieve the coordinates of the selected cell and the current cell. We use
them to determine the coordinates of the destination cell. The idea here is that
the difference between the peg to jump over and the peg to jump with should
be the same magnitude and sign as the difference between the destination cell
and the peg to jump over.
〈Peg Jump Check Destination Empty〉≡

unsigned int src[〈CubeNameSpace〉::DIMENSIONS];
unsigned int cur[〈CubeNameSpace〉::DIMENSIONS];

〈CubeNameSpace〉::indexToVector(srcSpot, src);
〈CubeNameSpace〉::indexToVector(cell, cur);

unsigned int dst[〈CubeNameSpace〉::DIMENSIONS];

for (unsigned int ii=0; ii < 〈CubeNameSpace〉::DIMENSIONS; ++ii) {
dst[ii] = (cur[ii]

+ (〈CubeNameSpace〉::SIDE_LENGTH
+ cur[ii] - src[ii]

)
) % 〈CubeNameSpace〉::SIDE_LENGTH;

}

unsigned int index;
〈CubeNameSpace〉::vectorToIndex(dst, &index);

if (((*this->cube)[index] & HOLE) == 0) {
return;

}

We also have to make sure that the destination cell is a legitimate neighbor of
the current cell. This is necessary because the calculation doesn’t care whether
wrapping is turned on or not.
〈Peg Jump Check Destination Is Neighbor〉≡

found = false;

for (unsigned int ii=0; !found && ii < nc; ++ii) {
found = (nn[ii] == index);

}

if (!found) {
return;

}

November 15, 2001 185

To actually do the jump, we clear out the selected cell and the current cell
and put a peg in the destination cell.
〈Peg Jump Do Jump〉≡

(*this->cube)[srcSpot] = HOLE;
(*this->cube)[cell] = HOLE;
(*this->cube)[index] = PEG;

if (this->view != 0) {
this->view->moveNoise();
this->view->redraw(srcSpot);
this->view->redraw(cell);
this->view->redraw(index);

}

--this->pegsRemaining;
++this->stepsTaken;

The game has been won if there is only one peg remaining.
〈Peg Jump Check Winning〉≡

if (!this->hasWon) {
this->hasWon = (this->pegsRemaining == 1);

if (this->hasWon && this->view != 0) {
〈Peg Jump Show Winning〉

}
}

To display the winning, we simply call the appropriate method on the View
class.
〈Peg Jump Show Winning〉≡

this->view->showWinning(
this->stepsTaken,
this->stepsTaken

);

19.6 The Peg class

In this section, we assemble the Peg class from the pieces in the sections above.
The first thing declared in the Peg class are the constants used to label the

contents of the cells.
〈Peg Class Definition〉≡

public:
〈Peg Constants〉

November 15, 2001 186

The next thing declared in the Peg class is the constructor.
〈Peg Class Definition〉+≡

public:
〈Peg Constructor Declaration〉

After that, the reset method, the is-selected method, the select method, and
the jump method are declared.
〈Peg Class Definition〉+≡

public:
〈Peg Reset Declaration〉
〈Peg Check Selected Declaration〉
〈Peg Select Declaration〉
〈Peg Jump Declaration〉

The data members of the Peg class all have private scope. The data members
specify the cube, the number of dimensions, the skill level, the wrapping mode,
the current location of the selected spot, the variables for tracking the winning
state, and the pointer to the view class if one was given.
〈Peg Class Definition〉+≡

private:
〈Peg Cube〉
〈Peg Dimensions〉
〈Peg Skill Level〉
〈Peg Wrap〉
〈Peg Selected Spot〉
〈Peg Move Counter〉
〈Peg Has Won〉
〈Peg View〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Peg Class Declaration〉≡

class Peg {
〈Peg Class Definition〉

};

19.7 The peg.h file

In this section, we assemble the header file for the Peg class. It is really straight-
forward since we assembled the class declaration in the previous section. The
only thing that we add to the class declaration is that we tuck it into our own
name space so that we can keep the global namespace squeaky clean.
〈peg.h〉≡

namespace 〈NameSpace〉 {
〈Peg Class Declaration〉

};

November 15, 2001 187

19.8 The peg.cpp file

For the actual C++ source code, we include the header file that defines assert(),
the header file for random(), the header file for the SDL stuff needed by the
view.h file, the header file for the cube, the header for the sound device, the
header file for the generic view class, the header file for the view class for this
particular game, the header file for the font class, the header file for the peg
view class, and the header file generated in the previous section.
〈peg.cpp〉≡

#include <assert.h>
#include <stdlib.h>
#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "font.h"
#include "pegView.h"
#include "peg.h"

Then, the source file incorporates the implementation of the constructor.
〈peg.cpp〉+≡

〈Peg Constructor Implementation〉
After that, the source file incorporates the implementations of the reset

method, the is-selected method, the select method, and the jump method.
〈peg.cpp〉+≡

〈Peg Reset Implementation〉
〈Peg Check Selected Implementation〉
〈Peg Select Implementation〉
〈Peg Jump Implementation〉

November 15, 2001 nws/pview.nw 188

20 The Peg Jumpers View

The namespace inside the peg view class is a concatenation of the general names-
pace and the name of the peg view class.
〈PegVNameSpace〉≡
〈NameSpace〉::PegView
The Peg game view inherits from the generic game view of §6. It displays

the current state of the Peg game.
The Peg game stores pointers to the images containing the tile pieces to use.

〈Peg Tiles〉≡
SDL_Surface* peg;
SDL_Surface* hole;
SDL_Surface* empty;
SDL_Surface* selected;

The Peg game stores a pointer to the font to use for displaying the hint text.
〈Peg Font〉≡

Font* font;

20.1 The Constructor

The constructor for the Peg view class takes six arguments. The first is a pointer
to the screen, the second is a pointer to the sound device, the third is a pointer
to the game cube, the fourth specifies the number of dimensions to employ, the
fifth is the skill level, and the sixth is the wrapping mode.
〈PegV Constructor Declaration〉≡

PegView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/pview.nw 189

The constructor for the Peg view class passes all of its arguments to the View
constructor. Then, it loads the images it uses. After that, it loads the font.
〈PegV Constructor Implementation〉≡

〈PegVNameSpace〉::PegView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : View(_screen, _sound, _cube, _dims, _skillLevel, _wrap)
{

assert(this->screen != 0);
assert(this->dims <= 4);

this->peg = ::IMG_Load("../../data/peg.png");
this->hole = ::IMG_Load("../../data/hole.png");
this->empty = ::IMG_Load("../../data/empty.png");
this->selected = ::IMG_Load("../../data/selected.png");

this->font = new Font();
}

20.2 The Destructor

The destructor for the peg view class simply release the images and font that it
loaded above in the constructor.
〈PegV Destructor Declaration〉≡

~PegView(void);

〈PegV Destructor Implementation〉≡
〈PegVNameSpace〉::~PegView(void)
{

delete this->font;

::SDL_FreeSurface(this->selected);
::SDL_FreeSurface(this->empty);
::SDL_FreeSurface(this->hole);
::SDL_FreeSurface(this->peg);

}

November 15, 2001 nws/pview.nw 190

20.3 The Redraw Methods

The Peg view class has a method which allows one to update the entire display
area for the game.
〈PegV Redraw Declarations〉≡

virtual void redraw(void);

The redraw function here calls the redraw function on the base class to
update the sidebar and the background area of the cube. Then, it runs through
each cell in the cube, drawing it. It draws some quick hints in the sidebar. After
that, it updates the whole screen.
〈PegV Redraw Implementations〉≡

void
〈PegVNameSpace〉::redraw(void)
{

this->View::redraw();

unsigned int maxIndex
= 〈CubeNameSpace〉::arrayLengths[this->dims];

for (unsigned int index=0; index < maxIndex; ++index) {
this->drawCell(index, false);

}

〈PegV Draw Quick Tip Text〉

::SDL_UpdateRect(this->screen, 0, 0, 0, 0);
}

November 15, 2001 nws/pview.nw 191

In the sidebar, we’re going to scribble some hints for the player on what
interactions are available.
〈PegV Draw Quick Tip Text〉≡

this->font->centerMessage(
this->screen, false,
700, 384,
"Remove a peg to start."

);
this->font->centerMessage(

this->screen, false,
700, 434,
"Click the peg to jump with."

);
this->font->centerMessage(

this->screen, false,
700, 474,
"Then, click the peg"

);
this->font->centerMessage(

this->screen, false,
700, 498,
"to jump over."

);

The Peg view class has a method which allows one to update a single cell of
the cube by index.
〈PegV Redraw Declarations〉+≡

virtual void redraw(unsigned int index);

This method simply uses the method defined next to draw the single cell in
question.
〈PegV Redraw Implementations〉+≡

void
〈PegVNameSpace〉::redraw(unsigned int index)
{

this->drawCell(index);
}

The Peg view class has a method to draw a single cell of the cube. It uses
this method in each of the above methods.
〈PegV Private Draw Declaration〉≡

void drawCell(unsigned int index, bool update = true);

November 15, 2001 nws/pview.nw 192

To draw a single cell, this method retrieves the screen coordinates of the cell
from the conversion method in the base class. Then, it prepares a rectangle to
fill for the cell. Then, it checks the state of the cell in the cube to determine
how to draw it.
〈PegV Private Draw Implementation〉≡

void
〈PegVNameSpace〉::drawCell(

unsigned int index, bool update
)

{
unsigned int xx;
unsigned int yy;

View::cellToScreen(index, this->dims, &xx, &yy);

〈PegV Prepare Single Cell Dst Rect〉

unsigned int value = (*this->cube)[index];

if ((value & 〈PegNameSpace〉::PEG) != 0) {
::SDL_BlitSurface(this->peg, 0, this->screen, &dst);

} else if ((value & 〈PegNameSpace〉::HOLE) != 0) {
::SDL_BlitSurface(this->hole, 0, this->screen, &dst);

} else {
::SDL_BlitSurface(this->empty, 0, this->screen, &dst);

}

if ((value & 〈PegNameSpace〉::SELECTED) != 0) {
::SDL_BlitSurface(this->selected, 0, this->screen, &dst);

}

if (update) {
::SDL_UpdateRect(this->screen, xx, yy, SQUARE, SQUARE);

}
}

The rectangle that will be filled to represent the cell simply starts at the
starting coordinates of the rectangle and goes the full size of the cell.
〈PegV Prepare Single Cell Dst Rect〉≡

SDL_Rect dst;
dst.x = xx;
dst.y = yy;
dst.w = SQUARE;
dst.h = SQUARE;

November 15, 2001 nws/pview.nw 193

20.4 The PegView class

In this section, we assemble the PegView class from the pieces in the sections
above.

We include, in the PegView class, the constructor, the destructor, and the
redraw methods.
〈PegV Class Definition〉≡

public:
〈PegV Constructor Declaration〉
〈PegV Destructor Declaration〉
〈PegV Redraw Declarations〉

private:
〈PegV Private Draw Declaration〉

We include the variables that are used in the tile view class.
〈PegV Class Definition〉+≡

private:
〈Peg Tiles〉
〈Peg Font〉

Once these declarations are all done, we throw all of these together into the
class declaration itself. The PegView inherits directly from the View class of §6.
〈PegV Class Declaration〉≡

class PegView : public View {
〈PegV Class Definition〉

};

20.5 The pegView.h file

In this section, we assemble the header file for the PegView class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈pegView.h〉≡

namespace 〈NameSpace〉 {
〈PegV Class Declaration〉

};

November 15, 2001 nws/pview.nw 194

20.6 The pegView.cpp file

In this section, we assemble the Peg view source file. It requires the SDL headers
for dealing with surfaces, the screen, blitting, and loading images. It requires
the header files for the Cube class, the Font class, the SoundDev class, the View
class, the PegView class itself, and the Peg class.
〈pegView.cpp〉≡

#include <assert.h>
#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "view.h"
#include "pegView.h"
#include "peg.h"

After the header files, we include the implementations of the constructor,
the destructor, the redraw methods, and the goal state methods.
〈pegView.cpp〉+≡

〈PegV Constructor Implementation〉
〈PegV Destructor Implementation〉
〈PegV Redraw Implementations〉
〈PegV Private Draw Implementation〉

November 15, 2001 nws/pcontrol.nw 195

21 The Peg Jumper Game Controller

The namespace inside the peg controller class is a concatenation of the general
namespace and the name of the Peg controller class.
〈PegCNameSpace〉≡
〈NameSpace〉::PegController
The Peg game controller inherits from the generic game controller of §5. It

actually controls the initialization and game action of the Peg game. It fields the
mouse clicks and converts them from screen coordinates into cell coordinates.
And, it fields events from the view sidebar that set the difficulty level and set
the wrap mode and set the dimensions and reset the game.

The Peg game controller contains an instance of the Peg game view.
〈PegC View〉≡

PegView view;

The Peg game controller also contains a pointer to the current instance of
the game model.
〈PegC Model〉≡

Peg* model;

21.1 The Constructor and Destructor

The constructor for the Peg controller class takes six arguments. The first is a
pointer to the screen, the second is a pointer to the sound device, the third is
a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth specifies the skill level to use, and the last specifies whether
the edges wrap around.
〈PegC Constructor Declaration〉≡

PegController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/pcontrol.nw 196

The constructor for the Peg controller class simply passes most of its argu-
ments to the Controller constructor. Then, it calls its own reset() method
to allocate a new instance of the Peg class.
〈PegC Constructor Implementation〉≡

〈PegCNameSpace〉::PegController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : Controller(_cube, _dims, _skillLevel, _wrap),
view(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
model(0)

{
this->view.backgroundMusic();
this->reset();

}

The destructor for the Peg controller class deletes the stored model for the
Peg game.
〈PegC Destructor Declaration〉≡

virtual ~PegController(void);

〈PegC Destructor Implementation〉≡
〈PegCNameSpace〉::~PegController(void)
{

this->view.backgroundMusic(true);
delete this->model;

}

21.2 The Reset Method

The PegController class has a method called reset(). It uses this method to
create a new instance of the Peg game model.
〈PegC Reset Declaration〉≡

void reset(void);

November 15, 2001 nws/pcontrol.nw 197

The method first deletes the old model and then creates a new model.
〈PegC Reset Implementation〉≡

void
〈PegCNameSpace〉::reset(void)
{

delete this->model;
this->model = new Peg(

this->cube,
this->dims,
this->skillLevel,
this->wrap,
&this->view

);
}

21.3 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it gets to know which mouse button was pressed.
〈PegC Mouse Click Declaration〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/pcontrol.nw 198

This method first gives the base class a chance to absorb the event with the
sidebar buttons. If it does not, then this method looks to see if any cell of the
cube was hit if the event is a mouse release. If the user right-clicked or if there is
no cell currently selected, this method selects the cell. If there is a cell selected
and this was a left-click, this method tries to jump the given cell.
〈PegC Mouse Click Implementation〉≡

void
〈PegCNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

unsigned int index;
bool hit;

hit = this->view.handleMouseClick(
this, isMouseUp, xx, yy, buttonNumber

);

if (!hit && !isMouseUp) {
hit = 〈ViewNameSpace〉::screenToCell(

xx, yy, this->dims, &index
);

if (hit) {
if (buttonNumber > 1 || !this->model->isSelected()) {

this->model->select(index);
} else {

this->model->jump(index);
}

}
}

}

21.4 The Game Setting Interface

The following method is invoked by the View class when someone clicks one of
the “dimensions” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈PegC Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims);

November 15, 2001 nws/pcontrol.nw 199

〈PegC Game Setting Implementation〉≡
void
〈PegCNameSpace〉::setDimension(

unsigned int _dims
)

{
if (_dims != this->dims) {

this->dims = _dims;
this->reset();

}
}

The following method is invoked by the View class when someone clicks one
of the “skill level” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈PegC Game Setting Interface〉+≡

virtual void setSkillLevel(unsigned int _skillLevel);

〈PegC Game Setting Implementation〉+≡
void
〈PegCNameSpace〉::setSkillLevel(

unsigned int _skillLevel
)

{
if (_skillLevel != this->skillLevel) {

this->skillLevel = _skillLevel;
this->reset();

}
}

The following method is invoked by the View class when someone clicks on
the “wrap” button on the sidebar. If the button wasn’t already selected, then
this triggers a reset().
〈PegC Game Setting Interface〉+≡

virtual void setWrap(bool _wrap);

〈PegC Game Setting Implementation〉+≡
void
〈PegCNameSpace〉::setWrap(

bool _wrap
)

{
if (_wrap != this->wrap) {

this->wrap = _wrap;
this->reset();

}
}

November 15, 2001 nws/pcontrol.nw 200

The following method is invoked by the View class when someone clicks on
the “new” button on the sidebar. This always triggers a reset().
〈PegC Game Setting Interface〉+≡

virtual void newGame(void);

〈PegC Game Setting Implementation〉+≡
void
〈PegCNameSpace〉::newGame(void)
{

this->reset();
}

21.5 The PegController class

In this section, we assemble the PegController class from the pieces in the
sections above.

We include, in the PegController class, the constructor and the destructor.
〈PegC Class Definition〉≡

public:
〈PegC Constructor Declaration〉
〈PegC Destructor Declaration〉

The PegController class also declares its reset method and the methods
used by the View class to change the game state.
〈PegC Class Definition〉+≡

private:
〈PegC Reset Declaration〉

public:
〈PegC Game Setting Interface〉

We include, in the PegController class, the method used for mouse clicks.
〈PegC Class Definition〉+≡

public:
〈PegC Mouse Click Declaration〉

The PegController class also contains the member variables which were
defined at the beginning of this section of the document.
〈PegC Class Definition〉+≡

private:
〈PegC View〉
〈PegC Model〉

November 15, 2001 nws/pcontrol.nw 201

Once these declarations are all done, we throw all of these together into
the class declaration itself. The PegController inherits directly from the
Controller class of §5.
〈PegC Class Declaration〉≡

class PegController : public Controller {
〈PegC Class Definition〉

};

21.6 The pegController.h file

In this section, we assemble the header file for the PegController class. It is
really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈pegController.h〉≡

namespace 〈NameSpace〉 {
〈PegC Class Declaration〉

};

21.7 The pegController.cpp file

In this section, we assemble the Peg controller source file. It requires the header
files for the Cube class the SoundDev class, the Controller class, the Font class,
the View class, the PegView class, the Peg class, and the PegController class.
〈pegController.cpp〉≡

#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "controller.h"
#include "font.h"
#include "view.h"
#include "pegView.h"
#include "peg.h"
#include "pegController.h"

After the header files, we include the implementations of the constructor and
destructor.
〈pegController.cpp〉+≡

〈PegC Constructor Implementation〉
〈PegC Destructor Implementation〉

November 15, 2001 nws/pcontrol.nw 202

After the constructor and destructor, the implementation of the reset()
method and the game state methods are also included.
〈pegController.cpp〉+≡

〈PegC Reset Implementation〉
〈PegC Game Setting Implementation〉

Then, we include the implementation of the method used to field mouse
clicks.
〈pegController.cpp〉+≡

〈PegC Mouse Click Implementation〉

November 15, 2001 203

Part VII

The Tile Slider Game

22 Tile Slider

The namespace inside the tile slider class is a concatenation of the general
namespace and the name of the tile slider class.
〈TileNameSpace〉≡
〈NameSpace〉::Tile
The Tile class keeps a pointer to the cube used for the game.

〈Tile Cube〉≡
Cube* cube;

The Tile class also tracks the number of dimensions that are being used.
It needs this information so that it can properly determine the neighbors of a
given point.
〈Tile Dimensions〉≡

unsigned int dims;

And, the Tile class tracks the current skill level.
〈Tile Skill Level〉≡

unsigned int skillLevel;

The Tile class also keeps track of whether or not it is wrapping around.
This is necessary so that it can properly determine neighbors of things near the
edge.
〈Tile Wrap〉≡

bool wrap;

The Tile class also keeps track of the index of the current location of the
blank spot.
〈Tile Blank Spot〉≡

unsigned int blankSpot;

The Tile class also keeps track of the number of moves made.
〈Tile Move Counter〉≡

int stepsTaken;

Also, to track the winning condition, there is a flag that tells whether the
game has already been won or not. After a person wins, she can play around
on the board as much as she likes before hitting the “New” button.
〈Tile Has Won〉≡

bool hasWon;

The Tile class also keeps track of the view pointer.
〈Tile View〉≡

TileView* view;

November 15, 2001 204

22.1 The Constructor

The constructor for the Tile class takes five arguments. The first is a pointer
to the game cube, the second specifies the number of dimensions to employ,
the third specifies the skill level to use, the fourth specifies whether the edges
wrap around, and the fifth is an option pointer to the view to update when cells
change.
〈Tile Constructor Declaration〉≡

Tile(
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true,
TileView* _view = 0

);

The constructor for the Tile class copies the arguments into its local vari-
ables. Then, it calls its own reset method to start a new game. But, first, it
verifies that all of the input arguments match its range expectations.
〈Tile Constructor Implementation〉≡

〈TileNameSpace〉::Tile(
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap,
TileView* _view

) : cube(_cube),
dims(_dims),
skillLevel(_skillLevel),
wrap(_wrap),
view(_view)

{
assert(cube != 0);
assert(dims >= 1);
assert(dims <= 4);
assert(skillLevel < 3);
this->reset();

}

22.2 The Reset Method

This method is used to start a new game. It requires no parameters. It assumes
that the number of dimensions, the skill level, and the wrap mode have already
been set.
〈Tile Reset Declaration〉≡

void reset(void);

November 15, 2001 205

The cube is set up to have each tile in order. The cube is then shuffled.
Then, the statistics for the game are reset and the view is refreshed.
〈Tile Reset Implementation〉≡

void
〈TileNameSpace〉::reset(void)
{

unsigned int len
= 〈CubeNameSpace〉::arrayLengths[this->dims];

for (unsigned int ii=0; ii < len; ++ii) {
(*this->cube)[ii] = ii;

}

〈Tile Shuffle Board〉
〈Tile Reset Current Statistics〉

if (this->view != 0) {
this->view->reset();
this->view->redraw();

}
}

Each of the transpositions happens by picking two elements of the array.
The contents of the two elements are swapped. We have to be careful not to
swap an element with itself so that we stay with the number of swaps that we
expected. Additionally, we never want to swap the blank spot.
〈Tile Shuffle Board〉≡

〈Tile Swap Table〉
unsigned int swaps = table[this->dims][this->skillLevel];

for (unsigned int ii=0; ii < swaps; ++ii) {
unsigned int sa = random() % (len - 1);
unsigned int sb = random() % (len - 2);

if (sb >= sa) {
++sb;

}

unsigned int tmp = (*this->cube)[sa];
(*this->cube)[sa] = (*this->cube)[sb];
(*this->cube)[sb] = tmp;

}

if (this->view != 0) {
this->view->redraw();

}

November 15, 2001 206

The following table is used to determine the number of swaps to perform
based upon the skill level and dimensions. These numbers have to be even to
ensure that we get an even permutation.
〈Tile Swap Table〉≡

unsigned int table[Cube::DIMENSIONS+1][3] = {
{ 0, 0, 0 },
{ 2, 4, 8 },
{ 2, 4, 8 },
{ 2, 4, 8 },
{ 2, 4, 8 },

};

To reset the statistics for the game, we first clear out the number of steps
taken and we set the current blank position to the location of the tile of highest
number.
〈Tile Reset Current Statistics〉≡

this->hasWon = false;
this->stepsTaken = 0;
this->blankSpot = len-1;

22.3 The Move Method

This method determines whether the person can go in a direct line from the
position given by the fromIndex parameter to the blank spot.
〈Tile Move Declaration〉≡

void move(unsigned int fromIndex);

This method saves the current position. Then, it retrieves the coordinates
of the current position and the proposed destination. It uses those coordinates
to determine which axis is the proposed axis of motion. Then, it slides the tiles
along that axis and checks to see if the user just won.
〈Tile Move Implementation〉≡

void
〈TileNameSpace〉::move(unsigned int toIndex)
{

unsigned int len = 〈CubeNameSpace〉::arrayLengths[this->dims];

〈Tile Move Get Coordinates〉
〈Tile Move Determine Axis〉
〈Tile Move Slide Tiles〉
〈Tile Move Check Winning〉

}

November 15, 2001 207

To get the coordinates of the starting and ending locations, we call the
indexToVector method on the Cube class.
〈Tile Move Get Coordinates〉≡

unsigned int vt[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(toIndex, vt);

unsigned int vc[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(this->blankSpot, vc);

To check the axis of motion, we determine the difference between the current
position and the destination position. If the move is not parallel to an axis, we
bail.
〈Tile Move Determine Axis〉≡

bool positive;
unsigned int axis;

if (〈CubeNameSpace〉::determineAxis(
vc, vt, this->wrap, &axis, &positive

) == false) {
return;

}

November 15, 2001 208

Now that we know which direction we should slide the tiles, we step through
in the appropriate direction sliding the tiles along. The notation here is a bit
confusing because we’re actually moving the blank spot from where it is vt to
where the person clicked vc. We cheat here and use the incrementing code from
§16.3.
〈Tile Move Slide Tiles〉≡

do {
if (positive) {

〈Maze Do Positive Step〉
} else {

〈Maze Do Negative Step〉
}

unsigned int newSpot;
〈CubeNameSpace〉::vectorToIndex(vc, &newSpot);

(*this->cube)[this->blankSpot] = (*this->cube)[newSpot];
if (this->view != 0) {

this->view->redraw(this->blankSpot);
}

this->blankSpot = newSpot;
(*this->cube)[this->blankSpot] = len - 1;

++this->stepsTaken;

} while (vt[axis] != vc[axis]);

if (this->view != 0) {
this->view->redraw(this->blankSpot);
this->view->moveNoise();

}

November 15, 2001 209

To check for a win, we first check to make sure the person has not already
won. If the person hasn’t already won, they can only win if the blank spot is in
the last place and all of the other tiles are in the correct order.
〈Tile Move Check Winning〉≡

if (!this->hasWon) {
this->hasWon = (this->blankSpot == len-1);

for (unsigned int ii=0; this->hasWon && ii < len; ++ii) {
hasWon = ((*this->cube)[ii] == ii);

}

if (this->hasWon && this->view != 0) {
this->view->showWinning(

this->stepsTaken,
this->stepsTaken

);
}

}

22.4 The Tile class

In this section, we assemble the Tile class from the pieces in the sections above.
The first thing declared in the Tile class is the constructor.

〈Tile Class Definition〉≡
public:

〈Tile Constructor Declaration〉
After that, the reset method and the move method are declared.

〈Tile Class Definition〉+≡
public:

〈Tile Reset Declaration〉
〈Tile Move Declaration〉

The data members of the Tile class all have private scope. The data mem-
bers specify the cube, the number of dimensions, the skill level, the wrapping
mode, the current location of the blank spot, the variables for tracking the
winning state, and the pointer to the view class if one was given.
〈Tile Class Definition〉+≡

private:
〈Tile Cube〉
〈Tile Dimensions〉
〈Tile Skill Level〉
〈Tile Wrap〉
〈Tile Blank Spot〉
〈Tile Move Counter〉
〈Tile Has Won〉
〈Tile View〉

November 15, 2001 210

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Tile Class Declaration〉≡

class Tile {
〈Tile Class Definition〉

};

22.5 The tile.h file

In this section, we assemble the header file for the Tile class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈tile.h〉≡

namespace 〈NameSpace〉 {
〈Tile Class Declaration〉

};

22.6 The tile.cpp file

For the actual C++ source code, we include the header file that defines assert(),
the header file for random(), the header file for the SDL stuff needed by the
view.h file, the header file for the cube, the header file for the sound device, the
header file for the generic view class, the header file for the font class, the header
file for the view class for this particular game, and the header file generated in
the previous section.
〈tile.cpp〉≡

#include <assert.h>
#include <stdlib.h>
#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "view.h"
#include "font.h"
#include "tileView.h"
#include "tile.h"

Then, the source file incorporates the implementation of the constructor.
〈tile.cpp〉+≡

〈Tile Constructor Implementation〉
After that, the source file incorporates the implementations of the reset

method and the move method.
〈tile.cpp〉+≡

〈Tile Reset Implementation〉
〈Tile Move Implementation〉

November 15, 2001 nws/tcontrol.nw 211

23 The Tile Slider Game Controller

The namespace inside the tile controller class is a concatenation of the general
namespace and the name of the Tile controller class.
〈TileCNameSpace〉≡
〈NameSpace〉::TileController
The Tile game controller inherits from the generic game controller of §5. It

actually controls the initialization and game action of the Tile game. It fields the
mouse clicks and converts them from screen coordinates into cell coordinates.
And, it fields events from the view sidebar that set the difficulty level and set
the wrap mode and set the dimensions and reset the game.

The Tile game controller contains an instance of the Tile game view.
〈TileC View〉≡

TileView view;

The Tile game controller also contains a pointer to the current instance of
the game model.
〈TileC Model〉≡

Tile* model;

23.1 The Constructor and Destructor

The constructor for the Tile controller class takes six arguments. The first is
a pointer to the screen, the second is a pointer to the sound device, the third
is a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth specifies the skill level to use, and the last specifies whether
the edges wrap around.
〈TileC Constructor Declaration〉≡

TileController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/tcontrol.nw 212

The constructor for the Tile controller class simply passes most of its argu-
ments to the Controller constructor. Then, it calls its own reset() method
to allocate a new instance of the Tile class.
〈TileC Constructor Implementation〉≡

〈TileCNameSpace〉::TileController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : Controller(_cube, _dims, _skillLevel, _wrap),
view(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
model(0)

{
this->view.backgroundMusic();
this->reset();

}

The destructor for the Tile controller class deletes the stored model for the
Tile game.
〈TileC Destructor Declaration〉≡

virtual ~TileController(void);

〈TileC Destructor Implementation〉≡
〈TileCNameSpace〉::~TileController(void)
{

this->view.backgroundMusic(true);
delete this->model;

}

23.2 The Reset Method

The TileController class has a method called reset(). It uses this method
to create a new instance of the Tile game model.
〈TileC Reset Declaration〉≡

void reset(void);

November 15, 2001 nws/tcontrol.nw 213

The method first deletes the old model and then creates a new model.
〈TileC Reset Implementation〉≡

void
〈TileCNameSpace〉::reset(void)
{

delete this->model;
this->model = new Tile(

this->cube,
this->dims,
this->skillLevel,
this->wrap,
&this->view

);
}

23.3 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it gets to know which mouse button was pressed.
〈TileC Mouse Click Declaration〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/tcontrol.nw 214

In this routine, we have to check whether we are in the mode of showing the
goal state or not. If we are, then we have to stop that. If we are not, then we
have to check whether the person right-clicked. If they did right-click, then we
should start showing the goal state.
〈TileC Mouse Click Implementation〉≡

void
〈TileCNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

〈TileC Check End Goal State〉
〈TileC Check Start Goal State〉

bool hit = this->view.handleMouseClick(
this, isMouseUp, xx, yy, buttonNumber

);

if (!hit) {
unsigned int index;
hit = 〈ViewNameSpace〉::screenToCell(

xx, yy, this->dims, &index
);

if (hit && ! isMouseUp) {
this->model->move(index);

}
}

}

If the view is currently showing the goal state, then we have to stop that on
the next mouse release.
〈TileC Check End Goal State〉≡

if (this->view.isShowingGoalState()) {
if (isMouseUp) {

this->view.showGoalState(false);
}
return;

}

November 15, 2001 nws/tcontrol.nw 215

If the person clicked with the right mouse button, then we have to tell the
view to start showing the goal state.
〈TileC Check Start Goal State〉≡

if (buttonNumber != 1) {
if (! isMouseUp) {

this->view.showGoalState(true);
}
return;

}

23.4 The Game Setting Interface

The following method is invoked by the View class when someone clicks one of
the “dimensions” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈TileC Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims);

〈TileC Game Setting Implementation〉≡
void
〈TileCNameSpace〉::setDimension(

unsigned int _dims
)

{
if (_dims != this->dims) {

this->dims = _dims;
this->reset();

}
}

The following method is invoked by the View class when someone clicks one
of the “skill level” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈TileC Game Setting Interface〉+≡

virtual void setSkillLevel(unsigned int _skillLevel);

〈TileC Game Setting Implementation〉+≡
void
〈TileCNameSpace〉::setSkillLevel(

unsigned int _skillLevel
)

{
if (_skillLevel != this->skillLevel) {

this->skillLevel = _skillLevel;
this->reset();

}
}

November 15, 2001 nws/tcontrol.nw 216

The following method is invoked by the View class when someone clicks on
the “wrap” button on the sidebar. If the button wasn’t already selected, then
this triggers a reset().
〈TileC Game Setting Interface〉+≡

virtual void setWrap(bool _wrap);

〈TileC Game Setting Implementation〉+≡
void
〈TileCNameSpace〉::setWrap(

bool _wrap
)

{
if (_wrap != this->wrap) {

this->wrap = _wrap;
this->reset();

}
}

The following method is invoked by the View class when someone clicks on
the “new” button on the sidebar. This always triggers a reset().
〈TileC Game Setting Interface〉+≡

virtual void newGame(void);

〈TileC Game Setting Implementation〉+≡
void
〈TileCNameSpace〉::newGame(void)
{

this->reset();
}

23.5 The TileController class

In this section, we assemble the TileController class from the pieces in the
sections above.

We include, in the TileController class, the constructor and the destructor.
〈TileC Class Definition〉≡

public:
〈TileC Constructor Declaration〉
〈TileC Destructor Declaration〉

The TileController class also declares its reset method and the methods
used by the View class to change the game state.
〈TileC Class Definition〉+≡

private:
〈TileC Reset Declaration〉

public:
〈TileC Game Setting Interface〉

November 15, 2001 nws/tcontrol.nw 217

We include, in the TileController class, the method used for mouse clicks.
〈TileC Class Definition〉+≡

public:
〈TileC Mouse Click Declaration〉

The TileController class also contains the member variables which were
defined at the beginning of this section of the document.
〈TileC Class Definition〉+≡

private:
〈TileC View〉
〈TileC Model〉

Once these declarations are all done, we throw all of these together into
the class declaration itself. The TileController inherits directly from the
Controller class of §5.
〈TileC Class Declaration〉≡

class TileController : public Controller {
〈TileC Class Definition〉

};

23.6 The tileController.h file

In this section, we assemble the header file for the TileController class. It is
really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈tileController.h〉≡

namespace 〈NameSpace〉 {
〈TileC Class Declaration〉

};

November 15, 2001 nws/tcontrol.nw 218

23.7 The tileController.cpp file

In this section, we assemble the Tile controller source file. It requires the header
files for SDL, the Cube class, the SoundDev class, the Controller class, the View
class, the Font, the Tile class, and the TileController classes.
〈tileController.cpp〉≡

#include <SDL.h>
#include "cube.h"
#include "soundDev.h"
#include "controller.h"
#include "view.h"
#include "font.h"
#include "tileView.h"
#include "tile.h"
#include "tileController.h"

After the header files, we include the implementations of the constructor and
destructor.
〈tileController.cpp〉+≡

〈TileC Constructor Implementation〉
〈TileC Destructor Implementation〉

After the constructor and destructor, the implementation of the reset()
method and the game state methods are also included.
〈tileController.cpp〉+≡

〈TileC Reset Implementation〉
〈TileC Game Setting Implementation〉

Then, we include the implementation of the method used to field mouse
clicks.
〈tileController.cpp〉+≡

〈TileC Mouse Click Implementation〉

November 15, 2001 nws/tview.nw 219

24 The Tile Sliders View

The namespace inside the tile view class is a concatenation of the general names-
pace and the name of the tile view class.
〈TileVNameSpace〉≡
〈NameSpace〉::TileView
The Tile game view inherits from the generic game view of §6. It displays

the current state of the Tile game.
The Tile game stores pointers to the images containing the tile pieces to use

and the color to make the blank cell.
〈Tile Tiles〉≡

SDL_Surface* centers;
SDL_Surface* borders;
unsigned int blank;

The Tile game also tracks whether it is in normal display mode or in the
mode to display the goal state.
〈Tile Show Goal〉≡

bool showGoal;

The Tile game stores a pointer to the font to use for displaying the help text.
〈Tile Font〉≡

Font* font;

24.1 The Constructor

The constructor for the Tile view class takes six arguments. The first is a pointer
to the screen, the second is a pointer to the sound device, the third is a pointer
to the game cube, the fourth specifies the number of dimensions to employ, the
fifth is the skill level, and the sixth is the wrapping mode.
〈TileV Constructor Declaration〉≡

TileView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/tview.nw 220

The constructor for the Tile view class passes all of its arguments to the
View constructor. It sets the mode to not be showing the goal state. Then, it
loads the images it uses and prepares the color for the blank cell. After that, it
loads the font.
〈TileV Constructor Implementation〉≡

〈TileVNameSpace〉::TileView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : View(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
showGoal(false)

{
assert(this->screen != 0);
assert(this->dims <= 4);

this->centers = ::IMG_Load("../../data/centers.png");
this->borders = ::IMG_Load("../../data/borders.png");
this->blank = ::SDL_MapRGB(this->screen->format, 0, 0, 0);

this->font = new Font();
}

24.2 The Destructor

The destructor for the maze view class simply release the images and font that
it loaded above in the constructor.
〈TileV Destructor Declaration〉≡

~TileView(void);

〈TileV Destructor Implementation〉≡
〈TileVNameSpace〉::~TileView(void)
{

delete this->font;

::SDL_FreeSurface(this->borders);
::SDL_FreeSurface(this->centers);

}

November 15, 2001 nws/tview.nw 221

24.3 The Redraw Methods

The Tile view class has a method which allows one to update the entire display
area for the game.
〈TileV Redraw Declarations〉≡

virtual void redraw(void);

The redraw function here calls the redraw function on the base class to
update the sidebar and the background area of the cube. Then, it runs through
each cell in the cube, drawing it. Then, it redraws quick tip text in the sidebar.
After that, it updates the whole screen.
〈TileV Redraw Implementations〉≡

void
〈TileVNameSpace〉::redraw(void)
{

this->View::redraw();

unsigned int maxIndex
= 〈CubeNameSpace〉::arrayLengths[this->dims];

for (unsigned int index=0; index < maxIndex; ++index) {
this->drawCell(index, false);

}

〈TileV Draw Quick Tip Text〉

::SDL_UpdateRect(this->screen, 0, 0, 0, 0);
}

In the sidebar, we’re going to scribble some hints for the player on what
interactions are available.
〈TileV Draw Quick Tip Text〉≡

this->font->centerMessage(
this->screen, false,
700, 434,
"Click on a tile to slide it."

);
this->font->centerMessage(

this->screen, false,
700, 474,
"Right-click or Shift-click"

);
this->font->centerMessage(

this->screen, false,
700, 498,
"to see the winning state."

);

November 15, 2001 nws/tview.nw 222

The Tile view class has a method which allows one to update a single cell of
the cube by index.
〈TileV Redraw Declarations〉+≡

virtual void redraw(unsigned int index);

This method simply uses the method defined next to draw the single cell in
question.
〈TileV Redraw Implementations〉+≡

void
〈TileVNameSpace〉::redraw(unsigned int index)
{

this->drawCell(index);
}

The Tile view class has a method to draw a single cell of the cube. It uses
this method in each of the above methods.
〈TileV Private Draw Declaration〉≡

void drawCell(unsigned int index, bool update = true);

November 15, 2001 nws/tview.nw 223

To draw a single cell, this method retrieves the screen coordinates of the cell
from the conversion method in the base class. Then, it prepares a rectangle to
fill for the cell. Then, it uses the coordinates of the goal-position of the piece to
draw the border and then the center of the of the cell.
〈TileV Private Draw Implementation〉≡

void
〈TileVNameSpace〉::drawCell(

unsigned int index, bool update
)

{
unsigned int xx;
unsigned int yy;

View::cellToScreen(index, this->dims, &xx, &yy);

〈TileV Prepare Single Cell Dst Rect〉
〈TileV Get Cell Value〉

unsigned int blankCell
= 〈CubeNameSpace〉::arrayLengths[this->dims] - 1;

if (value != blankCell) {
unsigned int coords[〈CubeNameSpace〉::DIMENSIONS];
〈CubeNameSpace〉::indexToVector(value, coords);
SDL_Rect src;

〈TileV Draw Border〉
〈TileV Draw Center〉

} else {
〈TileV Draw A Blank〉

}

if (update) {
::SDL_UpdateRect(this->screen, xx, yy, SQUARE, SQUARE);

}
}

The rectangle that will be filled to represent the cell simply starts at the
starting coordinates of the rectangle and goes the full size of the cell.
〈TileV Prepare Single Cell Dst Rect〉≡

SDL_Rect dst;
dst.x = xx;
dst.y = yy;
dst.w = SQUARE;
dst.h = SQUARE;

November 15, 2001 nws/tview.nw 224

If we are showing the goal state, then the value of the cell is assumed to be
the same as the index. If we are not showing the goal state, then the value of
the cell is taken from the cell itself.
〈TileV Get Cell Value〉≡

unsigned int value;
if (this->showGoal) {

value = index;
} else {

value = (*this->cube)[index];
}

To draw the border of a tile, we use the third and fourth coordinates in the
vector to determine which column and row (respectively) to use from the border
image. Then, we blit the border.
〈TileV Draw Border〉≡

src.x = coords[2] * SQUARE;
src.y = coords[3] * SQUARE;
src.w = SQUARE;
src.h = SQUARE;

::SDL_BlitSurface(this->borders, &src, this->screen, &dst);

To draw the center, we use the same approach as above except we do use
the first and second coordinates.
〈TileV Draw Center〉≡

src.x = coords[0] * SQUARE;
src.y = coords[1] * SQUARE;
src.w = SQUARE;
src.h = SQUARE;

::SDL_BlitSurface(this->centers, &src, this->screen, &dst);

To draw a blank, we merely fill in the cell with the color of the blank tile.
〈TileV Draw A Blank〉≡

::SDL_FillRect(this->screen, &dst, this->blank);

24.4 The Goal State Methods

There are two methods associated with the goal state. The first method queries
the current state. The second method sets the state.
〈TileV Goal State Declarations〉≡

bool isShowingGoalState(void) const;
void showGoalState(bool _state);

November 15, 2001 nws/tview.nw 225

The method that returns the current state is very simple. It merely returns
the internal state variable.
〈TileV Goal State Implementations〉≡

bool
〈TileVNameSpace〉::isShowingGoalState(void) const
{

return this->showGoal;
}

The method that sets the state checks to see if it this is a change. If it is,
then it sets the state and redraws.

〈TileV Goal State Implementations〉+≡
void
〈TileVNameSpace〉::showGoalState(bool _state)
{

if (_state != this->showGoal) {
this->showGoal = _state;
this->redraw();

}
}

24.5 The TileView class

In this section, we assemble the TileView class from the pieces in the sections
above.

We include, in the TileView class, the constructor, the destructor, the re-
draw methods, and the goal state methods.
〈TileV Class Definition〉≡

public:
〈TileV Constructor Declaration〉
〈TileV Destructor Declaration〉
〈TileV Redraw Declarations〉
〈TileV Goal State Declarations〉

private:
〈TileV Private Draw Declaration〉

We include the variables that are used in the tile view class.
〈TileV Class Definition〉+≡

private:
〈Tile Tiles〉
〈Tile Show Goal〉
〈Tile Font〉

November 15, 2001 nws/tview.nw 226

Once these declarations are all done, we throw all of these together into the
class declaration itself. The TileView inherits directly from the View class of
§6.
〈TileV Class Declaration〉≡

class TileView : public View {
〈TileV Class Definition〉

};

24.6 The tileView.h file

In this section, we assemble the header file for the TileView class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈tileView.h〉≡

namespace 〈NameSpace〉 {
〈TileV Class Declaration〉

};

24.7 The tileView.cpp file

In this section, we assemble the Tile view source file. It requires the SDL headers
for dealing with surfaces, the screen, blitting, and loading images. It requires
the header files for the Cube class, the Font class, the SoundDev class, the View
class, and the TileView class itself.
〈tileView.cpp〉≡

#include <assert.h>
#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "view.h"
#include "tileView.h"

After the header files, we include the implementations of the constructor,
the destructor, the redraw methods, and the goal state methods.
〈tileView.cpp〉+≡

〈TileV Constructor Implementation〉
〈TileV Destructor Implementation〉
〈TileV Redraw Implementations〉
〈TileV Private Draw Implementation〉
〈TileV Goal State Implementations〉

November 15, 2001 227

Part VIII

The Life Game

25 Life

The namespace inside the life class is a concatenation of the general namespace
and the name of the life class.
〈LifeNameSpace〉≡
〈NameSpace〉::Life
The Life class keeps a pointer to the cube used for the game.

〈Life Cube〉≡
Cube* cube;

The Life class also tracks the number of dimensions that are being used.
It needs this information so that it can properly determine the neighbors of a
given point.
〈Life Dimensions〉≡

unsigned int dims;

And, the Life class tracks the current skill level.
〈Life Skill Level〉≡

unsigned int skillLevel;

The Life class also keeps track of whether or not it is wrapping around.
This is necessary so that it can properly determine neighbors of things near the
edge.
〈Life Wrap〉≡

bool wrap;

The Life class also keeps track of the thresholds used within the game.
There is a threshold below which a living cell dies of loneliness, one there a
living cell dies of overcrowding, and a range on which a dead cell is given life.
These thresholds are a function of the skill level and the number of dimensions.
〈Life Thresholds〉≡

unsigned int lonelyHigh;
unsigned int smotherLow;
unsigned int birthLow;
unsigned int birthHigh;

The Life class also keeps track of the view pointer.
〈Life View〉≡

LifeView* view;

November 15, 2001 228

25.1 The Constructor

The constructor for the Life class takes five arguments. The first is a pointer
to the game cube, the second specifies the number of dimensions to employ, the
third specifies the skill level to use, the fourth specifies whether the edges wrap
around, and the fifth is an optional pointer to the view to update when cells
change.
〈Life Constructor Declaration〉≡

Life(
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true,
LifeView* _view = 0

);

The constructor for the Life class copies the arguments into its local vari-
ables. Then, it calls its own reset method to start a new game. But, first, it
verifies that all of the input arguments match its range expectations.
〈Life Constructor Implementation〉≡

〈LifeNameSpace〉::Life(
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap,
LifeView* _view

) : cube(_cube),
dims(_dims),
skillLevel(_skillLevel),
wrap(_wrap),
view(_view)

{
assert(cube != 0);
assert(dims >= 1);
assert(dims <= 〈CubeNameSpace〉::DIMENSIONS);
assert(skillLevel < 3);
this->reset();

}

25.2 The Reset Method

This method is used to start a new game. It requires no parameters. It assumes
that both the number of dimensions and the wrap mode have already been set.
〈Life Reset Declaration〉≡

void reset(void);

November 15, 2001 229

The cube is cleared. Then, the skill level is used to determine the proper
thresholds. Then, the view is refreshed.
〈Life Reset Implementation〉≡

void
〈LifeNameSpace〉::reset(void)
{

*this->cube = 0;

〈Life InfoTable〉
struct LifeInfo* tptr

= &table[this->dims][this->skillLevel];

this->lonelyHigh = tptr->lonelyHigh;
this->smotherLow = tptr->smotherLow;
this->birthLow = tptr->birthLow;
this->birthHigh = tptr->birthHigh;

if (this->view != 0) {
this->view->reset();
this->view->redraw();

}
}

November 15, 2001 230

The following table is used to determine what thresholds to use based on
dimensions and skill level.
〈Life InfoTable〉≡

struct LifeInfo {
unsigned int lonelyHigh;
unsigned int smotherLow;
unsigned int birthLow;
unsigned int birthHigh;

} table[〈CubeNameSpace〉::DIMENSIONS+1][3] = {
{

{ 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }
},
{

{ 0, 3, 1, 2 }, { 0, 2, 1, 1 }, { 1, 2, 1, 1 }
},
{

{ 0, 3, 1, 2 }, { 0, 2, 1, 1 }, { 1, 2, 1, 1 }
},
{

{ 0, 4, 1, 2 }, { 0, 3, 2, 2 }, { 1, 3, 2, 2 }
},
{

{ 0, 6, 2, 3 }, { 1, 4, 3, 3 }, { 2, 4, 3, 3 }
}

};

25.3 The Flip Method

The flip method will be used when the player right-clicks. It toggles the cube
entry at index.
〈Life Flip Declaration〉≡

void flip(unsigned int index, bool update = true);

The flip method is very simple.
〈Life Flip Implementation〉≡

void
〈LifeNameSpace〉::flip(

unsigned int index, bool update
)

{
(*this->cube)[index] ^= 1;

if (update && this->view != 0) {
this->view->redraw(index);

}
}

November 15, 2001 231

25.4 The Generation Method

This method causes the life game to run a generation.
〈Life Generation Declaration〉≡

void generation(void);

This method first copies the cube into a temporary variable. Then, it runs
through each cell of the cube. For each cell, it counts the number of neighbors
that that cell has which are turned on. Then, it determines whether the cell
should live or die based on that number. Then, we update the screen.
〈Life Generation Implementation〉≡

void
〈LifeNameSpace〉::generation(void)
{

bool update = false;

〈Life Generation copy cube〉

for (unsigned int ii=0; ii < len; ++ii) {
〈Life Generation count neighbors〉
〈Life Generation check thresholds〉

}
}

To copy the cube, we simply loop through each useful cell of the cube and
copy it into our new cube.
〈Life Generation copy cube〉≡

Cube cc;
unsigned int len

= 〈CubeNameSpace〉::arrayLengths[this->dims];
for (unsigned int ii=0; ii < len; ++ii) {

cc[ii] = (*this->cube)[ii];
}

To count the neighbors, we invoke the appropriate method on the cube class.
Then, we count the number which are alive.
〈Life Generation count neighbors〉≡

unsigned int nn[2 * 〈CubeNameSpace〉::DIMENSIONS];
unsigned int nc = this->cube->getNeighbors(

nn, ii, this->dims, this->wrap
);

unsigned int livingCount = 0;
for (unsigned int jj=0; jj < nc; ++jj) {

livingCount += cc[nn[jj]];
}

November 15, 2001 232

We use different thresholds to kill a cell than to give it life. So, we first have
to check whether the cell is living or dead.
〈Life Generation check thresholds〉≡

bool changed = false;

if (cc[ii] != 0) {
if (livingCount <= this->lonelyHigh
|| livingCount >= this->smotherLow) {

(*this->cube)[ii] = 0;
changed = true;

}
} else {

if (livingCount >= this->birthLow
&& livingCount <= this->birthHigh) {

(*this->cube)[ii] = 1;
changed = true;

}
}

if (changed && this->view != 0) {
this->view->redraw(ii);

}

25.5 The Life class

In this section, we assemble the Life class from the pieces in the sections above.
The first thing incorporated into the class definition is the declaration of the

constructor.
〈Life Class Definition〉≡

public:
〈Life Constructor Declaration〉

After that, the reset method is declared.
〈Life Class Definition〉+≡

public:
〈Life Reset Declaration〉

After that, the flip method and generation method are declared.
〈Life Class Definition〉+≡

public:
〈Life Flip Declaration〉
〈Life Generation Declaration〉

November 15, 2001 233

The data members of the Life class all have private scope. The data mem-
bers specify the cube, the number of dimensions, the skill level, the wrapping
mode, the number of on elements currently, the variables for tracking the win-
ning state, and the pointer to the view class if one was given.
〈Life Class Definition〉+≡

private:
〈Life Cube〉
〈Life Dimensions〉
〈Life Skill Level〉
〈Life Wrap〉
〈Life Thresholds〉
〈Life View〉

Once these declarations are all done, we throw all of these together into the
class declaration itself.
〈Life Class Declaration〉≡

class Life {
〈Life Class Definition〉

};

25.6 The life.h file

In this section, we assemble the header file for the Life class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈life.h〉≡

namespace 〈NameSpace〉 {
〈Life Class Declaration〉

};

November 15, 2001 234

25.7 The life.cpp file

For the actual C++ source code, we include the header file that defines assert(),
the header file for random(), the header file for the SDL stuff needed by the
view.h file, the header file for the cube, the header file for the font, the header
file for the sound device, the header file for the generic view class, the header
file for the view class for this particular game, and the header file generated in
the previous section.
〈life.cpp〉≡

#include <assert.h>
#include <stdlib.h>
#include <SDL.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "view.h"
#include "lifeView.h"
#include "life.h"

Then, the source file incorporates the implementation of the constructor.
〈life.cpp〉+≡

〈Life Constructor Implementation〉
After that, the source file incorporates the implementation of the reset

method.
〈life.cpp〉+≡

〈Life Reset Implementation〉
The source file also contains the implementations of the flip method and the

generation method.
〈life.cpp〉+≡

〈Life Flip Implementation〉
〈Life Generation Implementation〉

November 15, 2001 nws/lcontrol.nw 235

26 The Life Game Controller

The namespace inside the Life controller class is a concatenation of the general
namespace and the name of the Life controller class.
〈LifeCNameSpace〉≡
〈NameSpace〉::LifeController
The Life game controller inherits from the generic game controller of §5. It

actually controls the initialization and game action of the Life game. It fields the
mouse clicks and converts them from screen coordinates into cell coordinates.
And, it fields events from the view sidebar that set the difficulty level and set
the wrap mode and set the dimensions and reset the game.

The Life game controller contains an instance of the Life game view.
〈LifeC View〉≡

LifeView view;

The Life game controller also contains a pointer to the current instance of
the game model.
〈LifeC Model〉≡

Life* model;

26.1 The Constructor and Destructor

The constructor for the Life controller class takes six arguments. The first is a
pointer to the screen, the second is a pointer to the sound device, the third is
a pointer to the game cube, the fourth specifies the number of dimensions to
employ, the fifth specifies the skill level to use, and the last specifies whether
the edges wrap around.
〈LifeC Constructor Declaration〉≡

LifeController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/lcontrol.nw 236

The constructor for the Life controller class simply passes most of its argu-
ments to the Controller constructor. Then, it calls its own reset() method
to allocate a new instance of the Life class.
〈LifeC Constructor Implementation〉≡

〈LifeCNameSpace〉::LifeController(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : Controller(_cube, _dims, _skillLevel, _wrap),
view(_screen, _sound, _cube, _dims, _skillLevel, _wrap),
model(0)

{
this->view.backgroundMusic();
this->reset();

}

The destructor for the Life controller class deletes the stored model for the
Life game.
〈LifeC Destructor Declaration〉≡

virtual ~LifeController(void);

〈LifeC Destructor Implementation〉≡
〈LifeCNameSpace〉::~LifeController(void)
{

this->view.backgroundMusic(true);
delete this->model;

}

26.2 The Reset Method

The LifeController class has a method called reset(). It uses this method
to create a new instance of the Life game model.
〈LifeC Reset Declaration〉≡

void reset(void);

November 15, 2001 nws/lcontrol.nw 237

The method first deletes the old model and then creates a new model.
〈LifeC Reset Implementation〉≡

void
〈LifeCNameSpace〉::reset(void)
{

delete this->model;
this->model = new Life(

this->cube,
this->dims,
this->skillLevel,
this->wrap,
&this->view

);
}

26.3 The Mouse Event Interface

The routine which handles mouse events needs to know whether the event is a
mouse press or mouse release. It also needs to know where the event happened.
And, it needs to know which mouse button was pressed.
〈LifeC Mouse Click Declaration〉≡

virtual void handleMouseClick(
bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

);

November 15, 2001 nws/lcontrol.nw 238

This method first gives the mouse click to the view to see if any of the
buttons on the sidebar can account for the click. Then, if the view class didn’t
suck it up, then it tries to use the event itself. If this was a left-click, then it
calls the flip() method on the model if a cell of the game cube was hit. If it
is not a left-click, then a generation is run.
〈LifeC Mouse Click Implementation〉≡

void
〈LifeCNameSpace〉::handleMouseClick(

bool isMouseUp,
unsigned int xx,
unsigned int yy,
unsigned int buttonNumber

)
{

unsigned int index;
bool hit;

hit = this->view.handleMouseClick(
this, isMouseUp, xx, yy, buttonNumber

);

if (!hit) {
if (buttonNumber == 1) {

hit = 〈ViewNameSpace〉::screenToCell(
xx, yy, this->dims, &index

);

if (hit && ! isMouseUp) {
this->model->flip(index);

}
} else if (! isMouseUp) {

this->model->generation();
}

}
}

26.4 The Game Setting Interface

The following method is invoked by the View class when someone clicks one of
the “dimensions” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈LifeC Game Setting Interface〉≡

virtual void setDimension(unsigned int _dims);

November 15, 2001 nws/lcontrol.nw 239

〈LifeC Game Setting Implementation〉≡
void
〈LifeCNameSpace〉::setDimension(

unsigned int _dims
)

{
if (_dims != this->dims) {

this->dims = _dims;
this->reset();

}
}

The following method is invoked by the View class when someone clicks one
of the “skill level” buttons on the sidebar. If the button wasn’t already selected,
then this triggers a reset().
〈LifeC Game Setting Interface〉+≡

virtual void setSkillLevel(unsigned int _skillLevel);

〈LifeC Game Setting Implementation〉+≡
void
〈LifeCNameSpace〉::setSkillLevel(

unsigned int _skillLevel
)

{
if (_skillLevel != this->skillLevel) {

this->skillLevel = _skillLevel;
this->reset();

}
}

The following method is invoked by the View class when someone clicks on
the “wrap” button on the sidebar. If the button wasn’t already selected, then
this triggers a reset().
〈LifeC Game Setting Interface〉+≡

virtual void setWrap(bool _wrap);

〈LifeC Game Setting Implementation〉+≡
void
〈LifeCNameSpace〉::setWrap(

bool _wrap
)

{
if (_wrap != this->wrap) {

this->wrap = _wrap;
this->reset();

}
}

November 15, 2001 nws/lcontrol.nw 240

The following method is invoked by the View class when someone clicks on
the “new” button on the sidebar. This always triggers a reset().
〈LifeC Game Setting Interface〉+≡

virtual void newGame(void);

〈LifeC Game Setting Implementation〉+≡
void
〈LifeCNameSpace〉::newGame(void)
{

this->reset();
}

26.5 Other Hooks

Pardon if this isn’t well-documented. It’s meant to be a bit of an easter egg.
〈MainMenuC Find Which Item Clicked〉+≡

{
extern int __counter;
extern int __wonCount;

if (!hit && xx < 〈ViewNameSpace〉::SIDEBAR_X
&& __counter == 76 && __wonCount == 1) {

chosen = maxGame;
hit = true;
__wonCount = 2;

}
}

This would be nice to have to actually run the game.
〈Main Handle State Change〉≡

case 〈MainMenuVNameSpace〉::MAX_GAME:
controller = new 〈NameSpace〉::LifeController(

screen, soundDev, &cube
);

break;

〈Help Load parse file〉+≡
const char* ptr = baseName;
while (ptr != 0 && *ptr != 0) {

extern int __counter;
__counter ^= *ptr++;

}

November 15, 2001 nws/lcontrol.nw 241

〈Peg Jump Show Winning〉+≡
{

extern int __wonCount;
if (this->skillLevel == 2) {

++__wonCount;
}

}

〈lifeController.cpp〉≡
namespace 〈NameSpace〉 {

int __counter = 0;
int __wonCount = 0;

};
int __counter = 0;
int __wonCount = 0;

26.6 The LifeController class

In this section, we assemble the LifeController class from the pieces in the
sections above.

We include, in the LifeController class, the constructor and the destructor.
〈LifeC Class Definition〉≡

public:
〈LifeC Constructor Declaration〉
〈LifeC Destructor Declaration〉

The LifeController class also declares its reset method and the methods
used by the View class to change the game state.
〈LifeC Class Definition〉+≡

private:
〈LifeC Reset Declaration〉

public:
〈LifeC Game Setting Interface〉

We include, in the LifeController class, the method used for mouse clicks.
〈LifeC Class Definition〉+≡

public:
〈LifeC Mouse Click Declaration〉

The LifeController class also contains the member variables which were
defined at the beginning of this section of the document.
〈LifeC Class Definition〉+≡

private:
〈LifeC View〉
〈LifeC Model〉

November 15, 2001 nws/lcontrol.nw 242

Once these declarations are all done, we throw all of these together into
the class declaration itself. The LifeController inherits directly from the
Controller class of §5.
〈LifeC Class Declaration〉≡

class LifeController : public Controller {
〈LifeC Class Definition〉

};

26.7 The lifeController.h file

In this section, we assemble the header file for the LifeController class. It is
really straightforward since we assembled the class declaration in the previous
section. The only thing that we add to the class declaration is that we tuck
it into our own name space so that we can keep the global namespace squeaky
clean.
〈lifeController.h〉≡

namespace 〈NameSpace〉 {
〈LifeC Class Declaration〉

};

26.8 The lifeController.cpp file

In this section, we assemble the Life controller source file. It requires the header
files for the Cube class, the Controller class, and the LifeController classes.
〈lifeController.cpp〉+≡

#include <SDL.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "controller.h"
#include "view.h"
#include "lifeView.h"
#include "life.h"
#include "lifeController.h"

After the header files, we include the implementations of the constructor and
destructor.
〈lifeController.cpp〉+≡

〈LifeC Constructor Implementation〉
〈LifeC Destructor Implementation〉

After the constructor and destructor, the implementation of the reset()
method and the game state methods are also included.
〈lifeController.cpp〉+≡

〈LifeC Reset Implementation〉
〈LifeC Game Setting Implementation〉

November 15, 2001 nws/lcontrol.nw 243

Then, we include the implementation of the method used to field mouse
clicks.
〈lifeController.cpp〉+≡

〈LifeC Mouse Click Implementation〉

November 15, 2001 nws/lview.nw 244

27 The Life Game View

The namespace inside the Life view class is a concatenation of the general names-
pace and the name of the Life view class.
〈LifeVNameSpace〉≡
〈NameSpace〉::LifeView
The Life game view inherits from the generic game view of §6. It displays

the current state of the Life game.
The Life game stores pointers to the images of the tile pieces to use.

〈Life Tiles〉≡
SDL_Surface* alive;
SDL_Surface* dead;

The Life game view also stores a pointer to the font to render some hint text
in the sidebar.
〈Life Font〉≡

Font* font;

27.1 The Constructor

The constructor for the Life view class takes six arguments. The first is a pointer
to the screen, the second is a pointer to the sound device, the third is a pointer
to the game cube, the fourth specifies the number of dimensions to employ, the
fifth is the skill level, and the sixth is the wrapping mode.
〈LifeV Constructor Declaration〉≡

LifeView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims = 2,
unsigned int _skillLevel = 0,
bool _wrap = true

);

November 15, 2001 nws/lview.nw 245

The constructor for the Life view class passes all of its arguments to the
View constructor. Then, it loads the images for alive and dead cells and the
font for the hint text.
〈LifeV Constructor Implementation〉≡

〈LifeVNameSpace〉::LifeView(
SDL_Surface* _screen,
SoundDev* _sound,
Cube* _cube,
unsigned int _dims,
unsigned int _skillLevel,
bool _wrap

) : View(_screen, _sound, _cube, _dims, _skillLevel, _wrap)
{

this->alive = ::IMG_Load("../../data/on.png");
this->dead = ::IMG_Load("../../data/off.png");

this->font = new Font;
}

27.2 The Destructor

The destructor for the life view class simply release the font and images that it
loaded above in the constructor.
〈LifeV Destructor Declaration〉≡

~LifeView(void);

〈LifeV Destructor Implementation〉≡
〈LifeVNameSpace〉::~LifeView(void)
{

delete font;

::SDL_FreeSurface(this->dead);
::SDL_FreeSurface(this->alive);

}

27.3 The Redraw Methods

The Life view class has a method which allows one to update the entire display
area for the game.
〈LifeV Redraw Declarations〉≡

virtual void redraw(void);

November 15, 2001 nws/lview.nw 246

The redraw function here calls the redraw function on the base class to
update the sidebar and the background area of the cube. Then, it runs through
each cell in the cube, drawing it. After that, it prints some hints and updates
the whole screen.
〈LifeV Redraw Implementations〉≡

void
〈LifeVNameSpace〉::redraw(void)
{

this->View::redraw();

unsigned int maxIndex
= 〈CubeNameSpace〉::arrayLengths[this->dims];

for (unsigned int index=0; index < maxIndex; ++index) {
this->drawCell(index, false);

}

〈LifeV Draw Quick Tip Text〉

::SDL_UpdateRect(this->screen, 0, 0, 0, 0);
}

In the sidebar, we’re going to scribble some hints for the player on what
interactions are available.
〈LifeV Draw Quick Tip Text〉≡

this->font->centerMessage(
this->screen, false,
700, 434,
"Click a cell to toggle it."

);
this->font->centerMessage(

this->screen, false,
700, 474,
"Right-click or Shift-click"

);
this->font->centerMessage(

this->screen, false,
700, 498,
"anywhere to pass time."

);

The Life view class has a method which allows one to update a single cell of
the cube by index.
〈LifeV Redraw Declarations〉+≡

virtual void redraw(unsigned int index);

November 15, 2001 nws/lview.nw 247

This method simply uses the method defined next to draw the single cell in
question.
〈LifeV Redraw Implementations〉+≡

void
〈LifeVNameSpace〉::redraw(unsigned int index)
{

this->drawCell(index);
}

The Life view class has a method to draw a single cell of the cube. It uses
this method in each of the above methods.
〈LifeV Private Draw Declaration〉≡

void drawCell(unsigned int index, bool update = true);

To draw a single cell, this method retrieves the screen coordinates of the cell
from the conversion method in the base class. Then, it prepares a rectangle to
fill for the cell. Then, depending on the state of the cell in the game cube, it
either draws the region off or on.
〈LifeV Private Draw Implementation〉≡

void
〈LifeVNameSpace〉::drawCell(

unsigned int index, bool update
)

{
unsigned int xx;
unsigned int yy;

View::cellToScreen(index, this->dims, &xx, &yy);

〈LifeV Prepare Single Cell Rect〉

if ((*this->cube)[index] == 0) {
::SDL_BlitSurface(this->dead, 0, this->screen, &rect);

} else {
::SDL_BlitSurface(this->alive, 0, this->screen, &rect);

}
if (update) {

::SDL_UpdateRect(this->screen, xx, yy, SQUARE, SQUARE);
}

}

November 15, 2001 nws/lview.nw 248

The rectangle that will be filled to represent the cell simply starts at the
starting coordinates of the rectangle and goes almost the full size of the cell. It
doesn’t go quite to the edge so that one can clearly see the break between cells.
〈LifeV Prepare Single Cell Rect〉≡

SDL_Rect rect;
rect.x = xx;
rect.y = yy;
rect.w = SQUARE;
rect.h = SQUARE;

27.4 The LifeView class

In this section, we assemble the LifeView class from the pieces in the sections
above.

We include, in the LifeView class, the constructor, the destructor and the
redraw methods.
〈LifeV Class Definition〉≡

public:
〈LifeV Constructor Declaration〉
〈LifeV Destructor Declaration〉
〈LifeV Redraw Declarations〉

private:
〈LifeV Private Draw Declaration〉

We include the variables that are used in the life view class.
〈LifeV Class Definition〉+≡

private:
〈Life Tiles〉
〈Life Font〉

Once these declarations are all done, we throw all of these together into the
class declaration itself. The LifeView inherits directly from the View class of
§6.
〈LifeV Class Declaration〉≡

class LifeView : public View {
〈LifeV Class Definition〉

};

November 15, 2001 nws/lview.nw 249

27.5 The lifeView.h file

In this section, we assemble the header file for the LifeView class. It is really
straightforward since we assembled the class declaration in the previous section.
The only thing that we add to the class declaration is that we tuck it into our
own name space so that we can keep the global namespace squeaky clean.
〈lifeView.h〉≡

namespace 〈NameSpace〉 {
〈LifeV Class Declaration〉

};

27.6 The lifeView.cpp file

In this section, we assemble the Life view source file. It requires the SDL headers
for dealing with surfaces, the screen, blitting, and loading images. It requires
the header files for the Cube class, the Font class, the SoundDev class, the View
class, and the LifeView class itself.
〈lifeView.cpp〉≡

#include <SDL.h>
#include <SDL_image.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "view.h"
#include "lifeView.h"

After the header files, we include the implementations of the constructor,
the destructor, and the redraw methods.
〈lifeView.cpp〉+≡

〈LifeV Constructor Implementation〉
〈LifeV Destructor Implementation〉
〈LifeV Redraw Implementations〉
〈LifeV Private Draw Implementation〉

November 15, 2001 250

Part IX

The Main Program

28 The main loop of the program

Note, this uses stdio instead of the C++ iostream because using the iostream
functions really causes a jump in the size of the program. I know that iostream
is the “right” thing to do, but the overhead in program size isn’t worth it to me
for this contest.

28.1 Initializing the SDL Library

We have to initialize all of the SDL components that we are going to use. In
our case, it’s just the video and the audio.
〈Main Initialize SDL〉≡

unsigned int initFlags = 0;
initFlags |= SDL_INIT_VIDEO;
initFlags |= SDL_INIT_AUDIO;

After we prepare the flags, we simply call the init routine for the SDL library.
〈Main Initialize SDL〉+≡

if (::SDL_Init(initFlags) < 0) {
fprintf(stdout, "Failed to init SDL: %s\n", ::SDL_GetError());
return __LINE__;

}

If we succeeded in initializing SDL, then we’ll have to uninitialize it when
we exit.
〈Main Quit SDL〉≡

::SDL_Quit();

November 15, 2001 251

28.2 Initializing the SDL Video Mode

The following code initializes the SDL video mode. We require that the screen
be 800x600. All of the code in the View class assumes that, and all of the images
are sized for those dimensions. At the moment, we’re forcing a 24-bit depth.
Maybe we should use the SDL_ANYFORMAT flag instead. But, for the moment,
we’ll go with this.
〈Main Initialize Video Mode〉≡

unsigned int videoFlags = 0;

videoFlags |= SDL_SWSURFACE;
if (argc <= 1) {

videoFlags |= SDL_FULLSCREEN;
}

SDL_Surface* screen = ::SDL_SetVideoMode(
800, 600, 24, videoFlags

);

if (screen == 0) {
fprintf(stdout, "Failed to set video mode: %s\n",

::SDL_GetError()
);

return __LINE__;
}

Once we’ve initialized the screen, we set up the text for the title bar of the
window and the icon.
〈Main Initialize Video Mode〉+≡

::SDL_WM_SetCaption("54321 v1.0.2001.11.16", "54321");

After the screen has been initialized, we set the gamma to brighten things
up a bit.
〈Main Initialize Video Mode〉+≡

::SDL_SetGamma(1.6, 1.6, 1.6);

28.3 Initializing the SDL Audio Device

Here, we try to open the sound device. If this fails, then we just forget about
sound altogether.
〈Main Initialize Audio Device〉≡

〈NameSpace〉::SoundDev* soundDev = new 〈NameSpace〉::SoundDev;

if (! soundDev->isOpened()) {
delete soundDev;
soundDev = 0;

}

November 15, 2001 252

28.4 The Seeding the Random Numbers

To ensure that we start with different games each time, we will initialize the
random number generator based upon the process id and the number of ticks
that have happened up until this point.
〈Main Seed Random Number Generator〉≡

::srandom(getpid() ^ ::SDL_GetTicks());

28.5 The Event Loop

The main loop passes mouse events into the current controller. It catches user
events to switch modes. And, it catches keyboard events to do screen captures
unless we’re in release mode.
〈Main Event Loop〉≡

bool done = false;

SDL_Event event;

while (! done && ::SDL_WaitEvent(&event)) {
switch (event.type) {
case SDL_MOUSEBUTTONDOWN:
case SDL_MOUSEBUTTONUP:

〈Main Handle Mouse Click〉
break;

case SDL_USEREVENT:
delete controller;
switch (event.user.code) {

〈Main Handle State Change〉
}
break;

#ifndef NDEBUG
case SDL_KEYUP:

〈Main Handle Key Up〉
break;

#endif
case SDL_QUIT:

done = true;
break;

}
}

November 15, 2001 253

The salient portions of the mouse click event are pulled out of the event
structure and passed into the current controller’s mouse click handler. For
those without a two-button mouse, a meta key or a shift key will simulate a
higher button number.
〈Main Handle Mouse Click〉≡

if (controller != 0) {
bool isMouseUp = (event.type == SDL_MOUSEBUTTONUP);
unsigned int xx = event.button.x;
unsigned int yy = event.button.y;
unsigned int buttonNumber = event.button.button;
unsigned int mask = KMOD_META | KMOD_SHIFT;

if ((::SDL_GetModState() & mask) != 0) {
++buttonNumber;

}

controller->handleMouseClick(
isMouseUp, xx, yy, buttonNumber

);
}

November 15, 2001 254

The main menu generates events which tell the main loop to load start a new
controller. These events are simple user events. The event’s code tells which
game to pick.
〈Main Handle State Change〉+≡

case 〈MainMenuVNameSpace〉::FLIPFLOP:
controller = new 〈NameSpace〉::FlipFlopController(

screen, soundDev, &cube
);

break;
case 〈MainMenuVNameSpace〉::BOMBSQUAD:

controller = new 〈NameSpace〉::BombSquadController(
screen, soundDev, &cube

);
break;

case 〈MainMenuVNameSpace〉::MAZERUNNER:
controller = new 〈NameSpace〉::MazeController(

screen, soundDev, &cube
);

break;
case 〈MainMenuVNameSpace〉::PEGJUMPER:

controller = new 〈NameSpace〉::PegController(
screen, soundDev, &cube

);
break;

case 〈MainMenuVNameSpace〉::TILESLIDER:
controller = new 〈NameSpace〉::TileController(

screen, soundDev, &cube
);

break;
default:

controller = new 〈NameSpace〉::MainMenuController(
screen, &cube

);
break;

If we’re not compiling for release mode, then the comma key causes a screen
grab into a BMP.
〈Main Handle Key Up〉≡

if (event.key.keysym.sym == SDLK_COMMA) {
SDL_SaveBMP(screen, "../../screengrab.bmp");

}

November 15, 2001 255

28.6 The main.cpp file

This next chunk defines the main routine of the program. It incorporates all of
the previous portions of this section.
〈Main SDL-main〉≡

extern "C" int
SDL_main(int argc, char** argv)
{

〈Main Initialize SDL〉
〈Main Initialize Video Mode〉
〈Main Initialize Audio Device〉

〈Main Seed Random Number Generator〉

〈NameSpace〉::Cube cube;
〈NameSpace〉::Controller* controller = 0;

SDL_Event change;
change.type = SDL_USEREVENT;
change.user.code = -1;
::SDL_PushEvent(&change);

〈Main Event Loop〉

delete controller;
delete soundDev;

〈Main Quit SDL〉
return 0;

}

November 15, 2001 256

The main routine requires the <stdio.h> header for the fprintf() calls
it makes. It needs <stdlib.h> for the declaration of srandom(). It needs
<unistd.h> for the declaration of getpid(). It requires the <SDL.h> header for
all of the Simple DirectMedia Layer calls it invokes. It requires the "cube.h"
for the definition of the Cube class. It requires the "font.h" as a prerequisite
for some of the View subclasses. It requires the "soundDev.h" for the interface
to the SDL audio device. And, it requires the "controller.h" for the interface
to the game controllers. It requires the "view.h" file so that it can include the
game-specific controllers which use the game-specific View derivatives.
〈main.cpp〉≡

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <SDL.h>
#include <SDL_keysym.h>
#include "cube.h"
#include "font.h"
#include "soundDev.h"
#include "controller.h"
#include "view.h"

After that, it includes the classes used for the main menu.
〈main.cpp〉+≡

#include "mainmenuView.h"
#include "mainmenuController.h"

After that, it includes the classes used for the flip flop game.
〈main.cpp〉+≡

#include "flipflopView.h"
#include "flipflop.h"
#include "flipflopController.h"

After that, it includes the classes used for the bomb squad game.
〈main.cpp〉+≡

#include "bombView.h"
#include "bomb.h"
#include "bombController.h"

After that, it includes the classes used for the maze runner game.
〈main.cpp〉+≡

#include "mazeView.h"
#include "maze.h"
#include "mazeController.h"

After that, it includes the classes used for the peg jumper game.
〈main.cpp〉+≡

#include "pegView.h"
#include "peg.h"
#include "pegController.h"

November 15, 2001 257

After that, it includes the classes used for the tile slider game.
〈main.cpp〉+≡

#include "tileView.h"
#include "tile.h"
#include "tileController.h"

After that, it includes the classes used for the life game.
〈main.cpp〉+≡

#include "lifeView.h"
#include "life.h"
#include "lifeController.h"

The routine from the previous subsection is the only one included in the
source file main.cpp.
〈main.cpp〉+≡

〈Main SDL-main〉

November 15, 2001 258

Part X

Architecture-Specific Code

29 Darwin-specific code

This code is entirely snagged from code generated by the first SDL port to Mac
OS X by Darrell Walisser (dwaliss1@purdue.edu).

29.1 The Objective C application object

This portion declares the objective C object for the SDL program.
〈Darwin SDLMain Interface〉≡
@interface SDLMain : NSObject
{
}
- (IBAction)quit:(id)sender;
@end

This portion catches the quit event sent by Cocoa to the application. It
turns it into an SDL_QUIT event.
〈Darwin SDLMain Quit〉≡

- (void) quit:(id)sender
{

SDL_Event event;
event.type = SDL_QUIT;
SDL_PushEvent(&event);

}

November 15, 2001 259

This portion gets the program running in the right directory so that it has
all of its resources available to it. We don’t use many of those resources, but we
need the ones that are there.
〈Darwin SDLMain Setup Dir〉≡

- (void) setupWorkingDirectory
{

char parentDir[MAXPATHLEN + 1];
char *ch;

strncpy(parentDir, gArgv[0], MAXPATHLEN);
ch = parentDir;

while (*ch != ’\0’) {
++ch;

}

while (*ch != ’/’) {
--ch;

}

*ch = ’\0’;

assert(chdir(parentDir) == 0);
assert(chdir("../../../") == 0);

}

This method gets called when the application is done launching. This calls
the setupWorkingDirectory method defined above and then calls the SDL_main
program.
〈Darwin SDLMain Finish〉≡

- (void) applicationDidFinishLaunching:(NSNotification*)note
{

int status;
[self setupWorkingDirectory];

status = SDL_main(gArgc, gArgv);
exit(status);

}

November 15, 2001 260

29.2 The ObjectiveMain routine

This next section is the main routine for the Objective C portion of the code.
It simply gets the command-line arguments ready to be sent to SDL_main().
Then, it calls the application main.
〈Darwin SDLMain ObjectiveMain〉≡

int
ObjectiveMain(int argc, char** argv)
{

int ii;

if (argc >= 2 && strncmp(argv[1], "-psn", 4) == 0) {
gArgc = 1;

} else {
gArgc = argc;

}

gArgv = (char**)malloc(sizeof(*gArgv) * (gArgc+1));
assert(gArgv != NULL);
for (ii=0; ii < gArgc; ++ii) {

gArgv[ii] = argv[ii];
}

gArgv[ii] = NULL;

NSApplicationMain(argc, argv);

return 0;
}

29.3 The Darwin-main.m file

The above bits are all assembled to form an Objective-C source file. The source
file includes the SDL header, some Cocoa headers, and a few headers that it
needs to do the directory changes above.
〈Darwin-main.m〉≡
#import "SDL.h"
#import <Cocoa/Cocoa.h>
#import <sys/param.h>
#import <unistd.h>
#import <stdlib.h>

After that, the source file includes the definition of the SDL application
object interface.
〈Darwin-main.m〉+≡
〈Darwin SDLMain Interface〉

November 15, 2001 261

The source file then defines some global variables used to track the command-
line arguments.
〈Darwin-main.m〉+≡
static int gArgc;
static char **gArgv;

After that, the source file includes the implementation of the SDL application
object defined above.
〈Darwin-main.m〉+≡
@implementation SDLMain
〈Darwin SDLMain Quit〉
〈Darwin SDLMain Setup Dir〉
〈Darwin SDLMain Finish〉
@end

And, the source file includes the ObjectiveMain() routine from §29.2.
〈Darwin-main.m〉+≡
〈Darwin SDLMain ObjectiveMain〉

29.4 The Darwin-main-help.cpp file

To get things started, we actually define main in a C++ file. If we don’t do
this, then global objects don’t end up getting constructed. The main routine
here simply turns around and invokes the ObjectiveMain() from §29.2

〈Darwin-main-help.cpp〉≡
#ifdef main

#undef main
#endif

extern "C" int ObjectiveMain(int, char*[]);

int
main(int argc, char* argv[])
{

return ObjectiveMain(argc, argv);
}

