
C++ Template Class for Geometric Algebras

nklein software (www.nklein.com)

v1.0.2000.05.17

Contents

1 Version 2

2 License 3

3 Introduction 3

4 The GeometricAlgebra Template Class 4
4.1 Data Members . 4
4.2 Methods . 5

4.2.1 Constructor . 5
4.2.2 Copy Constructor . 6
4.2.3 Assignment Operator . 6
4.2.4 Coefficient Accessors . 6
4.2.5 Addition . 7
4.2.6 Subtraction . 8
4.2.7 Negation . 9
4.2.8 Grade Involution . 10
4.2.9 Reversion . 11
4.2.10 Conjugation . 12
4.2.11 Multiplication . 13

4.3 Class . 15

5 Test Code 16

6 The GeomMultTable Template Class 17
6.1 Data . 18
6.2 Methods . 18

6.2.1 Constructor . 18
6.2.2 Query Method . 20

6.3 Class . 20

1

7 The GeomGradeTable Template Class 20
7.1 Data . 21
7.2 Methods . 21

7.2.1 Constructor . 21
7.2.2 Query Method . 22

7.3 Class . 22

8 Source Files 23
8.1 geoma.h . 23
8.2 geomaData.h . 23
8.3 geoma.cc . 24

1 Version

2 〈version 2〉≡ (23b)
"v1.0.2000.05.17"

2

2 License

Adapted from http://www.nklein.com/etc/copyright.html
We at nklein software made all text, software, and other stuff in this pack-

age. We authorize you to do anything you like with these so long as you do not
restrict the rights of others to do what they like with them. We’re not saying
you have to give away your products. We’re just saying that all of the items in
this package have a Universal, Non-Exclusive License.

For example, if you wanted to take some of this text or some of this software
and plaster your name on them and sell them, fine. But, you cannot keep Sally
Q. Public from taking those same items and plastering her name on them and
selling them. You just can’t. It’s all as hers as it is yours.

All of that said, it’d please us plenty if you slung appreciation, accolades,
credit, and/or cash our way as you see fit.

3 Introduction

The geometric algebras or Clifford algebras are very useful in a variety of areas.
There are some packages out there to deal with them in Maple and Java and
such. But, to our knowledge, this is the only publically available C++ template
class to implement them.

The Clifford algebra C `p,q is an algebra generated by vectors from a quadratic
space. The first p unit vectors contribute positively to the norm and the other
q unit vectors contribute negatively to the norm. For unit vectors ei and e j,

eie j = ei j =

 1 1 ≤ i = j ≤ p
−1 p < i = j ≤ p + q

−e jei = −e ji i 6= j
(1)

In other words, a vector r = ∑p+q
i=1 aiei obeys

rr = r2 = 〈r, r〉 =
p

∑
i=1

a2
i −

p+q

∑
i=p+1

a2
i (2)

All of the cross terms here cancel out because ei j = −e ji when i 6= j.
In a general multiplication of two vectors a and b, these terms do not cancel

out. But, because of the anticommutativity of the cross-terms, we can always
sort the order of the subscripts and only affect the sign of the coefficient. For
example:

e3142 = −e3124

= e1324

= −e1234

3

And, identical subscripts annihilate each other when adjacent. For example, in
C `1,3

e2142 = −e2124

= e1224

= −e14

and

e2141 = −e2114

= −e24

There are some excellent introductions to Clifford algebras available on the
web. Some of these are:

• http://www.mrao.cam.ac.uk/~clifford—The Geometric Algebra Group
at Cambridge

• http://www.hit.fi/~lounesto—Pertti Lounesto whose excellent book
Clifford Algebras and Spinors got me started with Clifford algebras.

• http://www.clifford.org—The International Clifford Algebra Society
(though this page is fairly out of date).

The class implemented in this document is a template class that requires
three template parameters: the data type for scalars, the value of p, and the
value of q. The data type for scalars must support addition, subtraction, multi-
plication, assignment from another member of the same type, and assignment
from the integer 0. The multiplication need not be commutative.

4 The GeometricAlgebra Template Class

This is the main template class generated in this document. It implements
addition of a multivector and scalar, subtraction of a scalar from a multivector,
and (left or right) multiplication of a multivector by a scalar. It implements
the negation, addition, subtraction, multiplication, coefficient access, grade-
involution, reversion, and conjugation of arbitrary elements of C `p,q.

4.1 Data Members

The coefficients of the various k-forms are stored in an array. The array has to
contain 2p+q coefficients. These are the

(p+q
k

)
k-forms for all 0 ≤ k ≤ p + q.

The binary digits of the index specify which unit vectors make up this k-
form. A k-form will have k-bits set in the index. Because every k-form can be
reordered with transpositions (with a possible change of sign), we only need
to track which unit vectors compose a given k-form. We do not need to track

4

the order in which they appear. The n-th bit of the index will specify the unit
vector en+1.

Here are some examples of k-forms from C `1,3 and their indices in base 2
and base 10.

1 = 00002 = 010
e2 = 00102 = 210

e23 = 01102 = 610
e14 = 10012 = 910

e134 = 11012 = 1310
e1234 = 11112 = 1510

(3)

So, the array of coefficients must hold 2p+q elements of the data type Type
given to the template.

5a 〈data members 5a〉≡ (15)
Type coef[1U << (P+Q)];

4.2 Methods

Herein lie the implementations of the constructor, the coefficient accessor, the
addition, subtraction, multiplication, and various involutions.

4.2.1 Constructor

In the constructor for the GeometricAlgebra template class, we simply initial-
ize all of the coefficients to zero if the init parameter is true. The init param-
eter defaults to true. But, we allow one to skip initialization in order to allow
one to optimize out the initialization of things that will just be assigned over
immediately. This is especially useful if assigning the integer 0 to an element
of type Type is expensive.

5b 〈public methods 5b〉≡ (15) 6a.
GeometricAlgebra(bool init = true)
{

if (init) {
for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {

coef[ii] = 0;
}

}
}

Uses GeometricAlgebra 15.

5

4.2.2 Copy Constructor

In the copy constructor for the GeometricAlgebra template class, we employ
the use of the assignment operator.

6a 〈public methods 5b〉+≡ (15) /5b 6b.
inline
GeometricAlgebra(const GeometricAlgebra<Type,P,Q>& b)
{

*this = b;
}

Uses GeometricAlgebra 15.

4.2.3 Assignment Operator

In the assignment operator for the GeometricAlgebra template class, we em-
ploy the use of the assignment operator for Type and simply copy the coeffi-
cients.

6b 〈public methods 5b〉+≡ (15) /6a 6c.
inline GeometricAlgebra<Type,P,Q>&
operator =(const GeometricAlgebra<Type,P,Q>& b)
{

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
coef[ii] = b.coef[ii];

}
return *this;

}
Uses GeometricAlgebra 15.

4.2.4 Coefficient Accessors

In the coefficient accessor, we make sure that the index is within the valid
range. If it is too big, we huck an exception. Otherwise, we return the re-
quested coefficient.

6c 〈public methods 5b〉+≡ (15) /6b 7a.
inline Type&
operator [] (const unsigned int index)
{

if (index >= (1U << (P+Q))) {
throw out_of_range("index");

}
return coef[index];

}

6

And, we made a const version of the same thing.

7a 〈public methods 5b〉+≡ (15) /6c 10.
inline const Type&
operator [] (const unsigned int index) const
{

if (index >= (1U << (P+Q))) {
throw out_of_range("index");

}
return coef[index];

}

4.2.5 Addition

The addition of a multivector and a scalar is quite simple. We simply add the
scalar to the zero-th coefficient of the multivector.

7b 〈friend methods 7b〉≡ (23a) 7c.
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator + (const GeometricAlgebra<Type,P,Q>& a,

const Type& b)
{

GeometricAlgebra<Type,P,Q> c = a;

c[0] = a[0] + b;

return c;
}

Uses GeometricAlgebra 15.

And, left-addition of a scalar is basically the same thing.

7c 〈friend methods 7b〉+≡ (23a) /7b 8a.
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator + (const Type& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c = b;

c[0] = a + b[0];

return c;
}

Uses GeometricAlgebra 15.

7

The addition of two multivectors is fairly straightforward. We simply add
the corresponding components.

8a 〈friend methods 7b〉+≡ (23a) /7c 8b.
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator + (const GeometricAlgebra<Type,P,Q>& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c(false);

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a[ii] + b[ii];

}

return c;
}

Uses GeometricAlgebra 15.

4.2.6 Subtraction

The subtraction of a scalar from a multivector is quite simple. We simply sub-
tract the scalar from the zero-th coefficient of the multivector.

8b 〈friend methods 7b〉+≡ (23a) /8a 9a.
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator - (const GeometricAlgebra<Type,P,Q>& a,

const Type& b)
{

GeometricAlgebra<Type,P,Q> c = a;

c[0] = a[0] - b;

return c;
}

Uses GeometricAlgebra 15.

8

At this point, we have opted not to subtract multivectors from scalars. If
you want this functionality, you will just have to employ left-scalar addition
and multivector negation.

The subtraction of two multivectors is fairly straightforward. We simply
subtract the corresponding components.

9a 〈friend methods 7b〉+≡ (23a) /8b 9b.
template <class Type, const unsigned int P, const unsigned int Q>

inline
GeometricAlgebra<Type,P,Q>
operator - (const GeometricAlgebra<Type,P,Q>& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c(false);

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a[ii] - b[ii];

}

return c;
}

Uses GeometricAlgebra 15.

4.2.7 Negation

The negation of a multivector is quite straightforward. We simply negate each
coefficient of the multivector. Rather than require the Type of the coefficients
to support unary negation, we will just subtract from a zero scalar.

9b 〈friend methods 7b〉+≡ (23a) /9a 13a.
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator - (const GeometricAlgebra<Type,P,Q>& a)
{

GeometricAlgebra<Type,P,Q> b(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
b[ii] = zero - a[ii];

}

return b;
}

Uses GeometricAlgebra 15.

9

4.2.8 Grade Involution

The grade involution of a multivector is a bit funky. It toggles the sign of ev-
ery coefficient of an odd-graded element. In code, this amounts to wheter the
bottom bit of the grade is set. Rather than require the Type of the coefficients
to support unary negation, we will just subtract it from a zero scalar.

10 〈public methods 5b〉+≡ (15) /7a 11.
inline
GeometricAlgebra<Type,P,Q>
GradeInvolution(void) const
{

GeometricAlgebra<Type,P,Q> a(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
if ((GetGrade(ii) & 1) != 0) {

a[ii] = zero - coef[ii];
} else {

a[ii] = coef[ii];
}

}

return a;
}

Uses GeometricAlgebra 15.

10

4.2.9 Reversion

The reversion of a multivector is fairly hairy. It reverses the order of the sub-
scripts for each k-form. For example, the 3-form e123 becomes e321 = −e123
while the 4-form e1234 does not change signs.

Now, the sign only depends upon the odd-ness or even-ness of the num-
ber of transpositions required to get things back in order. This obeys a simple
recurrance relationship. Let T(n) be the number of transpositions required to
revert an n-form. Then, we can see that T(n + 1) = T(n) + n− 1 because it will
require T(n) transpositions to reorder the first n subscripts and n− 1 transpo-
sitions to get the n + 1-th subscript from one end of the list to the other.

With this recurrence relationship, we can see that the odd-ness or even-ness
of T(n + 4) is the same as that of T(n), because

T(n + 4) = T(n + 3) + n + 2
= T(n + 2) + 2n + 3
= T(n + 1) + 3n + 3
= T(n) + 4n + 2

And, because T(0) and T(1) are even while T(2) and T(3) are odd, we have
that an n-form requires an odd number of transpositions to revert iff n ≡ 2 or
n ≡ 3 modulo 4. In code, this translates to whether the second bit of the grade
is set.

11 〈public methods 5b〉+≡ (15) /10 12.
inline
GeometricAlgebra<Type,P,Q>
Reversion(void) const
{

GeometricAlgebra<Type,P,Q> a(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
if ((GetGrade(ii) & 2) != 0) {

a[ii] = zero - coef[ii];
} else {

a[ii] = coef[ii];
}

}

return a;
}

Uses GeometricAlgebra 15.

11

4.2.10 Conjugation

The conjugation of a multivector is a grade involution and a reversion (in either
order). Thus, this code is similar to the code in the previous two sections. The
sign of the coefficient changes iff either but not both of the grade involution
and reversion would change it.

12 〈public methods 5b〉+≡ (15) /11
inline
GeometricAlgebra<Type,P,Q>
Conjugation(void) const
{

GeometricAlgebra<Type,P,Q> a(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
switch (GetGrade(ii) & 3) {
case 0:
case 3:

a[ii] = coef[ii];
break;

case 1:
case 2:

a[ii] = zero - coef[ii];
break;

}
}

return a;
}

Uses GeometricAlgebra 15.

12

4.2.11 Multiplication

The multiplication of a multivector by a scalar is rather straightforward. We
simply multiply each coefficient in the multivector by the scalar.

13a 〈friend methods 7b〉+≡ (23a) /9b 13b.
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator * (const GeometricAlgebra<Type,P,Q>& a,

const Type& b)
{

GeometricAlgebra<Type,P,Q> c;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a[ii] * b;

}

return c;
}

Uses GeometricAlgebra 15.

Here, since multiplication need not be commutative in Type, we must take
to preserve this.

13b 〈friend methods 7b〉+≡ (23a) /13a 14.
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator * (const Type& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a * b[ii];

}

return c;
}

Uses GeometricAlgebra 15.

13

The multiplication of two multivectors is a bit more complicated. Here,
we have to sum up all of the terms that contribute to each coefficient in the
product. Fortunately, with the index-scheme that we defined in 4.1 on page 4,
the product of the i-th term of the first vector and the j-th term of the second
vector contributes to the i⊗ j coefficient where ⊗ is a bitwise XOR. The sign of
the product is stored in the GeomMultTable.

14 〈friend methods 7b〉+≡ (23a) /13b
template <class Type, const unsigned int P, const unsigned int Q=0>

inline
GeometricAlgebra<Type,P,Q>
operator * (const GeometricAlgebra<Type,P,Q>& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
for (unsigned int jj=0; jj < (1U << (P+Q)); ++jj) {

unsigned int index = (ii ^ jj);
if (c.IsPositive(ii, jj)) {

c[index] = c[index] + (a[ii] * b[jj]);
} else {

c[index] = c[index] - (a[ii] * b[jj]);
}

}
}

return c;
}

Uses GeometricAlgebra 15.

14

4.3 Class

The actual GeometricAlgebra template class itself inherits from the GeomMultTable
template class which is described in section 6 on page 17. The GeometricAlgebra
template class uses the GeomMultTable template class to maintains the lookup
tables that are used in the multiplication, grade involution, reversion, and con-
jugation. Beyond that, it contains some data members of its own and the meth-
ods that were implemented above.

15 〈template class 15〉≡ (23a)
template <class Type, const unsigned int P, const unsigned int Q=0>

class GeometricAlgebra
: public nklein_priv::GeomMultTable<P,Q>

{
protected:

〈data members 5a〉
public:

〈public methods 5b〉
};

Defines:
GeometricAlgebra, used in chunks 5–14, 16, and 23b.

Uses GeomMultTable 20b.

15

5 Test Code

The test code creates a couple of C `2,1 multivectors and does a variety of things
to them. At each step, the multivector is printed so that the reader can verify
that things function as claimed. This code also creates several other types of
multivectors. The point of this is to ensure that multiple types of multivec-
tors can be created without the templates losing their heads. Additionally, one
can check with a tool such as nm(1) to ensure that this code only creates one
gradeTable (for n = 3) and two multTables (one for p = 2, q = 1 and one for
p = 3, q = 0).

16 〈test code 16〉≡ (24)
int
main(void)
{

nklein::GeometricAlgebra< int, 2, 1 > a;
nklein::GeometricAlgebra< int, 2, 1 > b;
nklein::GeometricAlgebra< int, 2, 1 > c(false);
nklein::GeometricAlgebra< int, 3 > d;
nklein::GeometricAlgebra< double, 3 > e;
nklein::GeometricAlgebra< complex< double >, 3 > f;

a[0] = 1;
a[1] = 1;
a[3] = 1;
a[7] = 1;

b[1] = 1;
b[2] = 1;
b[4] = 1;

c = a;
cout << "a = " <<

〈test code print c 17〉;

c = b;
cout << "b = " <<

〈test code print c 17〉;

c = 2 * a - b;
cout << "2*a - b = " <<

〈test code print c 17〉;

c = a.GradeInvolution();
cout << "\\hat{a} = " <<

〈test code print c 17〉;

16

c = a.Reversion();
cout << "\\tilde{a} = " <<

〈test code print c 17〉;

c = a.Conjugation();
cout << "\\bar{a} = " <<

〈test code print c 17〉;

c = b*b;
cout << "b*b = " <<

〈test code print c 17〉;

c = a*b;
cout << "a*b = " <<

〈test code print c 17〉;

c = b*a;
cout << "b*a = " <<

〈test code print c 17〉;

return 0;
}

Uses GeometricAlgebra 15.

To print out a C `2,1 multivector, we simply emit each coefficient with the
appropriate k-form.

17 〈test code print c 17〉≡ (16)
c[0]

<< " + " << c[1] << "e_1"
<< " + " << c[2] << "e_2"
<< " + " << c[4] << "e_3"
<< " + " << c[3] << "e_{12}"
<< " + " << c[5] << "e_{13}"
<< " + " << c[6] << "e_{23}"
<< " + " << c[7] << "e_{123}"
<< endl

6 The GeomMultTable Template Class

The general GeometricAlgebra template class uses the GeomMultTable tem-
plate class. This template class is not in the nklein namespace alongside the
GeometricAlgebra template class. It is not intended for general use. But, it
helps conserve memory.

17

6.1 Data

The thrust of this table is that it holds the sign of the multiplication of a given j-
form by a given k-form. Which indices correspond to which k-forms is describe
in section 4.1 on page 4.

18a 〈template multiplication table private data 18a〉≡ (20b)
static int multTable[1U << (P+Q)][1U << (P+Q)];

18b 〈template multiplication table data 18b〉≡ (23b)
template<const unsigned int P, const unsigned int Q=0>

int GeomMultTable<P,Q>::multTable[1U << (P+Q)][1U << (P+Q)];
Uses GeomMultTable 20b.

6.2 Methods

Herein lie the implementations of the constructor and the query methods for
this template class.

6.2.1 Constructor

To fill the table, we run through every combination of coefficient ii by coeffi-
cient jj and we track how many times we have to “move” bits of jj past bits
of ii. The iiTopBits variable keeps track of how many bits we may still have
to slide past in ii.

18c 〈template multiplication methods 18c〉≡ (20b)
GeomMultTable()
{

for (unsigned ii=0; ii < (1U << (P+Q)); ++ii) {
unsigned int iiInitialTopBits = GetGrade(ii);

for (unsigned jj=0; jj < (1U << (P+Q)); ++jj) {
unsigned int iiTopBits = iiInitialTopBits;

〈template multiplication table calculate sign 19a〉

multTable[ii][jj] = sign;
}

}
}

Uses GeomMultTable 20b.

18

To calculate the sign of the multiplication of ii and jj, we go through each
of the bits which are set in jj. We know that the sign is a function of the parity
of the number of transpositions that this bit must incur to navigate into the
proper spot in the result. The number of transpositions is tracked in iiTopBits
which tells how many bits in ii are above the kk-th bit. And, if the bit is also
set in ii, then we have translated the bit next to an adjacent one. If that is the
case, then we must annhilate the like subscripts.

19a 〈template multiplication table calculate sign 19a〉≡ (18c)
int sign = 1;

for (unsigned int kk=0; kk < (P+Q); ++kk) {
unsigned int bit = (1U << kk);

〈template multiplication table update iiTopBits 19b〉

if ((jj & bit) != 0) {
sign *= (iiTopBits & 1) ? -1 : 1;

if ((ii & bit) != 0) {
〈template multiplication table annhilate like indices 19c〉

}
}

}

If the current bit is set in ii, then we must decrement the number of bits
that the bit in jj will have to pass on its way into position.

19b 〈template multiplication table update iiTopBits 19b〉≡ (19a)
if ((ii & bit) != 0) {

--iiTopBits;
}

If the unit vector that we are sliding is one of the first p, then the sign is fine
the way it is. But, if it is one of the other q, then we have to toggle the sign to
annhilate the indices.

19c 〈template multiplication table annhilate like indices 19c〉≡ (19a)
if (kk >= P) {

sign *= -1;
}

19

6.2.2 Query Method

One can check the sign adjustment of the multiplication of the ii coefficient
by the jj coefficient by calling this method. It simply range checks the indices
and then returns whether the multTable entry for those indices is positive.

20a 〈template multiplication public methods 20a〉≡ (20b)
static inline bool IsPositive(unsigned int ii, unsigned int jj)
{

if (ii >= (1U << (P+Q))) {
throw out_of_range("first index");

}
if (jj >= (1U << (P+Q))) {

throw out_of_range("second index");
}
return (multTable[ii][jj] >= 0);

}

6.3 Class

The multiplication table inherits from the GeomGradeTable which is described
in section 7 on page 20. The class itself contains some private data, a protected
constructor, and the public query method.

20b 〈template multiplication table 20b〉≡ (23a)
template<const unsigned int P, const unsigned int Q=0>

class GeomMultTable : public GeomGradeTable<P+Q> {
private:

〈template multiplication table private data 18a〉
protected:

〈template multiplication methods 18c〉
public:

〈template multiplication public methods 20a〉
};

Defines:
GeomMultTable, used in chunks 15 and 18.

Uses GeomGradeTable 22b.

7 The GeomGradeTable Template Class

The general GeometricAlgebra template class and the GeomMultTable tem-
plate class use the GeomGradeTable template class. This template class is not
in the nklein namespace alongside the GeometricAlgebra template class. It is
not intended for general use. But, it helps conserve memory.

20

7.1 Data

The thrust of this table is that it holds the grade of each coefficient.

21a 〈template grade table private data 21a〉≡ (22b)
static int gradeTable[1U << (N)];

21b 〈template grade table data 21b〉≡ (23b)
template<const unsigned int N>

int GeomGradeTable<N>::gradeTable[1U << (N)];
Uses GeomGradeTable 22b.

7.2 Methods

Herein lie the implementations of the constructor and the query methods for
this template class.

7.2.1 Constructor

We simply count the number of bits that are set in ii. This is the grade of the
coefficient with index ii.

21c 〈template grade methods 21c〉≡ (22b)
GeomGradeTable()
{

for (unsigned ii=0; ii < (1U << (N)); ++ii) {
unsigned int iiBits = 0;
〈template grade table count bits in ii 21d〉
gradeTable[ii] = iiBits;

}
}

Uses GeomGradeTable 22b.

To count the bits in ii, we loop through each byte of ii with the help of the
char* called ptr. At each byte, we add in the number of bits which are set in
the low nibble and the high nibble with the help of the lookup table lut.

21d 〈template grade table count bits in ii 21d〉≡ (21c)
char* ptr = (char*)ⅈ

for (unsigned int kk=0; kk < sizeof(unsigned int); ++kk) {
static const unsigned int lut[] = {

0, 1, 1, 2, 1, 2, 2, 3,
1, 2, 2, 3, 2, 3, 3, 4

};
iiBits += lut[(ptr[kk] >> 0) & 0x0F];
iiBits += lut[(ptr[kk] >> 4) & 0x0F];

}

21

7.2.2 Query Method

The GeomGradeTable class has this accessor method to retrieve the grade of a
given index. It simply range checks the index and then returns the table entry
for the given index.

22a 〈template grade public methods 22a〉≡ (22b)
static inline unsigned int GetGrade(unsigned int index)
{

if (index >= (1U << (N))) {
throw out_of_range("index");

}
return gradeTable[index];

}

7.3 Class

The grade table template class contains some private data, a protected con-
structor, and its public query method.

22b 〈template grade table 22b〉≡ (23a)
template<const unsigned int N>

class GeomGradeTable {
private:

〈template grade table private data 21a〉
protected:

〈template grade methods 21c〉
public:

〈template grade public methods 22a〉
};

Defines:
GeomGradeTable, used in chunks 20 and 21.

22

8 Source Files

In order to use all of this stuff, we will have to break it out into source files. We
have broken it up into three source files which will hopefully ensure the best
use of memory.

8.1 geoma.h

The geoma.h file contains the declarations and implementations of each of the
classes described above. These are all wrapped in the nklein namespace to
hopefully avoid collisions with anything else in the free world.

23a 〈geoma.h 23a〉≡
namespace nklein {

namespace nklein_priv {
〈template grade table 22b〉
〈template multiplication table 20b〉

};

〈template class 15〉
〈friend methods 7b〉

};

8.2 geomaData.h

The geomaData.h file contains all of the static variable declarations needed by
the template classes in geoma.h. We separated this out from the rest of geoma.h
so that if one is using the same vector type across multiple source files, one
would only need to have the geomaData.h included in one of them. This avoids
having the table declared in multiple places.

23b 〈geomaData.h 23b〉≡
namespace nklein {

namespace nklein_priv {
〈template multiplication table data 18b〉
〈template grade table data 21b〉

};

static const char* GeometricAlgebraVersion
= "nklein::GeometricAlgebra::version: " 〈version 2〉;

};
Uses GeometricAlgebra 15.

23

8.3 geoma.cc

And, the geoma.cc simply includes the test code above. In practice, you will
not need this file at all. It simply demonstrates how you would go about em-
ploying this template class.

24 〈geoma.cc 24〉≡
#include <iostream>
#include <stdexcept>
#include <complex>
#include "geoma.h"
#include "geomaData.h"

〈test code 16〉

Document Information

This document was created using vi, noweb, and LATEX.

Noweb Index

GeometricAlgebra: 5b, 6a, 6b, 7b, 7c, 8a, 8b, 9a, 9b, 10, 11, 12, 13a, 13b, 14, 15,
16, 23b

GeomGradeTable: 20b, 21b, 21c, 22b
GeomMultTable: 15, 18b, 18c, 20b

24

